Lethe: A Tunable Delete-Aware LSM-Based Storage Engine Subhadeep Sarkar Tarikul Islam Papon Dimitris Staratzis Manos Athanassoulis # Even years later, Twitter doesn't delete your direct messages Small Datum Jan '20 Deletes are fast and slow in an LSM "LSM-based data stores perform suboptimally for workloads with deletes." ## Now, let's talk about deletes! delete := insert tombstone delete := insert tombstone ### the problems ### the problems poor read perf. write amplification space amplification ### delete persistence latency ### delete persistence latency ### delete persistence latency ### delete(5) within a threshold time: Dth # the problems poor read perf. write amplification space amplification unbounded delete persistence latency ### the problems poor read perf. write amplification space amplification unbounded delete persistence latency latency spikes superfluous I/Os #### the solution poor read perf. write amplification unbounded delete latency spikes superfluous I/Os #### the solution latency spikes #### the solution latency spikes # Key Weaving storage layout # Key Weaving storage layout ### delete all entries with timestamp <= 65_D partitioned on S partitioned on S partitioned on S | page 2 | | | | | | | | | | | | | |-----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|--|--|--|--|--| | 29 | 32 | 33 | 40 | 44 | 52 | 56 | 60 | | | | | | | 88 _D | 90 _D | 28 _D | 74 _D | 9 _D | 76 _D | 81 _D | 64 _D | | | | | | partitioned on S | page 2 | | | | | | | | | | | | | |-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|--| | 4 | 40 | 52 | 14 | 19 | 56 | 29 | 32 | | | | | | | 69 _D | 74 _D | 76 _D | 79 _D | 80 _D | 81 _D | 88 _D | 90 _D | | | | | | #### delete all entries with timestamp <= 65_D drop page #### delete all entries with timestamp <= 65_D sorted on S 69_D | 79_D | 80_D | 88_D | 90_D | 74_D | 76_D | 81_D 32 52 56 29 19 drop page #### delete all entries with timestamp <= 65_D partitioned on S partitioned on D drop drop 1 1/0 #### the solution #### the solution lookup secondary range cost delete cost #### lookup secondary range cost delete cost lookup secondary range cost delete cost # suboptimal state of the art design for workloads with deletes FADE persists deletes timely using latency-driven compactions KiWi supports efficient secondary range deletes by key-interweaved data layout Lethe strikes balance between cost, performance, and latency # Thank Jou midas.bu.edu/lethe