
IET Networks
Research Article
Theoretical modelling of fog computing:
a green computing paradigm
to support IoT applications
IET Netw., 2016, Vol. 5, Iss. 2, pp. 23–29
& The Institution of Engineering and Technology 2016
ISSN 2047-4954
Received on 1st April 2015
Revised on 19th August 2015
Accepted on 15th October 2015
doi: 10.1049/iet-net.2015.0034
www.ietdl.org
Subhadeep Sarkar1,2 ✉, Sudip Misra1

1School of Information Technology, Kharagpur 721302, India
2School of Medical Science and Technology Indian Institute of Technology, Kharagpur 721302, India

✉ E-mail: subhadeep@smst.iitkgp.ernet.in

Abstract: In this study, the authors focus on theoretical modelling of the fog computing architecture and compare its
performance with the traditional cloud computing model. Existing research works on fog computing have primarily
focused on the principles and concepts of fog computing and its significance in the context of internet of things (IoT).
This work, one of the first attempts in its domain, proposes a mathematical formulation for this new computational
paradigm by defining its individual components and presents a comparative study with cloud computing in terms of
service latency and energy consumption. From the performance analysis, the work establishes fog computing, in
collaboration with the traditional cloud computing platform, as an efficient green computing platform to support the
demands of the next generation IoT applications. Results show that for a scenario where 25% of the IoT applications
demand real-time, low-latency services, the mean energy expenditure in fog computing is 40.48% less than the
conventional cloud computing model.

1 Introduction 1.1 Motivation
Cloud computing, in recent years, has added a new dimension to the
traditional means of computation, data storage, and service
provisioning [1–3]. However, the rapid increase in the number of
ubiquitous mobile and sensing devices which are connected to the
Internet challenges the traditional network architecture of the cloud
computing framework. As reported by Cisco, by the year 2020,
the next generation Internet-connected devices, often termed as
Internet of things (IoT) would comprise of around 50 billion
Internet-connected devices [4]. A large number of devices are
located at the edge of the network require support for mobility and
low latency, real-time, and location-aware services [5]. Cisco
proposed a new computational paradigm, termed as fog
computing, that subdues the shortcomings of cloud computing by
transferring some of the core functions of cloud towards the
network edge.

Fog computing is a distributed computing paradigm, that
empowers the network devices at different hierarchical levels with
various degrees of computational and storage capability [6].
Bonomi et al. [7, 8] discussed and characterised fog computing,
and justified its suitability for the services and applications of IoT.
Some other works [9–13] on fog computing have also highlighted
the advantages of fog computing over the traditional cloud
computing. In [5], Hong et al. designed a programming model for
mobile fog computing to serve large scale IoT applications. Few
works [14, 15] have addressed the security and privacy issues
associated with fog computing. Resource allocation within the fog
computing paradigm [10, 16–18] has also been explored at a
preliminary level. A practical implementation of fog computing
using Raspberry Pi [19] was attempted by Krishnan et al.
However, none of these works focuses on modelling of the fog
computing architecture which is of pivotal importance from an
implementation perspective. Motivated by the works of Misra
et al. [20] and Dong et al. [21], in this paper, we develop a
theoretical model to mathematically represent the fog computing
architecture by defining its individual components. Besides, we
provide a comparative study of fog computing with traditional
cloud computing, and analyse the impact of this new
computational paradigm based on certain parameters in the context
of IoT applications.
The conventional cloud computing architecture is completely
centralised in nature, and therefore, fails to provide real-time and
low latency services to billions of IoT devices at the edge of the
network, simultaneously. The fact that the cloud framework thrives
on the idea of virtualisation of services [22, 23] can be cited as the
root behind this major shortcoming of cloud computing. In
the process of virtualisation, the cloud service providers (CSPs)
render their users with services from geo-spatially remote locations,
and thereby, invoking high latency in service provisioning.
Therefore, the need for a new computational paradigm to support
the traditional cloud computing model in handling the requirements
of these latency-sensitive IoT applications is imminent.

It should be clearly mentioned, that fog computing is not a
substitute of cloud computing, rather these two technologies
complement one another. The complementary functions of cloud
and fog enable the users to experience a new breed of computing
technology that serves the requirements of the real-time,
low-latency IoT applications running at the network edge [24], and
also supports complex analysis and long-term storage of data at
the core of the network.
1.2 Paper organisation

The remaining of the paper is organised as follows. Section 2
provides a comprehensive outline of the fog computing
architecture. In Section 3, the mathematical modelling of the
system is presented. We design the different performance metrics
in Section 4, and analyse the performance of the fog computing
paradigm in contrast with that of the traditional cloud computing
framework in Section 5. In Section 6, we discuss few practical
applications of the fog computing paradigm before finally
concluding the work in Section 7.
2 Fog computing architecture

As stated earlier, fog computing is a non-trivial extension of cloud
computing [7], and typically serves as a platform that bridges
23



numerous sensing devices situated at the network edge to the core
computing structure of the cloud.
2.1 Assumptions

Strictly stating, at this early stage of research fog computing is yet to
be realised in a large and practical scale. Therefore, in this work, we
draw few simplified, yet realistic assumptions.

† The terminal nodes (TNs) in the network, such as mobile phones,
smart vehicles, and smart metres are aware of and able to transmit
their absolute geo-spatial location through technologies such as
GPS, GIS, or GNSS.
† The fog computing tier comprises of ‘intelligent’ devices which
are capable of computing, processing, and storing data in addition
to routing and forwarding the data-packets to the upper tier [5].
† The networking devices in the fog computing layer (see Fig. 1) are
able to share the network, computational, and storage load among
themselves as per requirement.
† The fog computing devices are able to provide optimal support for
mobility of the TNs.
2.2 System outline

A generic fog architecture can be thought as a three tier network
structure [25], as shown in Fig. 1:

(a) Tier 1: This is the bottom-most layer encompasses all the TNs
(IoT devices), which are responsible for sensing of a multitude of
events and transmitting the raw sensed data to its immediate upper
layer in the hierarchy.
(b) Tier 2: The middle layer, also known as the fog computing layer,
comprises of devices, such as routers, gateways, switches, and access
points, which are intelligent enough to process, compute, and
temporarily store the received information. These fog computing
Fig. 1 Fog computing architecture

24
devices are connected to the cloud framework, and are responsible
for sending data to the cloud on a periodic basis.
(c) Tier 3: The cloud computing layer is the upper-most layer in this
architecture. The layer constitutes of multiple high-end servers and
data centres which are capable of processing and storing an
enormous amount of data.

2.3 Architecture details

The tier closest to the ground builds a network of several
sensor-equipped, Internet-connected end-devices, often termed as
IoT. The data transmitted by these TNs are received by the edge
gateways present at the border of the fog tier. Unlike the
traditional cloud architecture, in fog computing not every data
packet is redirected to core cloud computing module for
processing. Instead, all real-time analysis and latency-sensitive
applications are run on the fog layer itself. The fog computing
devices in this layer have limited semi-permanent storage that
allows them to store the received data temporarily for analysis and
then send the source devices the needful feedbacks.

The geo-spatially close TNs are grouped together to form a virtual
cluster (VC). These VCs are assumed to have an injective
(one-to-one) mapping with the fog instances (FIs). An FI is
conceptualised specific to a geographic location, and the VC
comprising of all the Internet-connected TNs within that location
is served by the co-located FI. Based on its location a TN may
leave and join any VC, and get disconnected and connected to the
corresponding FI. The FIs are assumed to be capable of
self-adaptation according to the demand-load.

The cloud computing tier is responsible for permanent and large-scale
storage of data and computationally extensive analysis of the global
data-set. Unlike the traditional cloud computing architecture, instead
of getting blasted for every small query and for storage of every
relevant or irrelevant chunk of data, in fog computing, the cloud
core module is now accessed in a periodic and controlled manner,
leading to efficient and improved utilisation of the cloud resources.
IET Netw., 2016, Vol. 5, Iss. 2, pp. 23–29
& The Institution of Engineering and Technology 2016



3 Mathematical model of the system

In this section, we mathematically describe the fog computing
architecture by defining its composite entities and the operational
functions involved. While formulation of the mathematical model,
it is assumed that the total number of TNs spanning across all VCs
in tier 1 is constant over time. Moreover, the VCs provide
complete coverage for all the TNs present in the lowest tier. We
define the important physical and virtual components of the fog
computing architecture below.

Definition 1 (TN): A TN denoted by T , is defined as a six-tuple

T = kTid, Tst, ti, L, H, I [q]l

where, Tid is an integer representing the unique ID of the TN, and the
rest of the tuples are defined as follows. The set of TNs is indicated
by T̃ . Henceforth, the set of entities are denoted using this notation,
all throughout the paper.

Definition 2 (Status of a TN): A status of a TN, Tst, defines whether
the node is in active state or not, and is represented as a boolean:
Tst = {0, 1}, where the values 0 and 1 symbolise the inactive and
active states, respectively.

Definition 3 (Type of TN): The type of a TN (ti) indicates the type of
event that a node senses. Mathematically, it is presented an element
of the set t = {t1, t2,…, tp}, where t denotes set of all events being
monitored by the TNs, and p is the total number of distinct types of
events.

Definition 4 (Location of a TN): The geo-spatial location of a TN is
defined as a four-tuple

L = klx, ly, lz, tsl

where, lx, ly, and lz represent the longitude, latitude, and altitude of a
TN, respectively. ts denotes the time-stamp at which the node is
transmitting its location.

Property 1: The belonging of a TN in a VC at time t, is independent
of its belonging at time instant t–1.

The tuple H dictates the specifications of a TN which includes its
hardware details, along with its mode of operation, operational
frequency, and sampling rate.

Definition 5 (Specifications of a TN): The specifications of a TN (H)
is represented as a six-tuple

H = kP, M, B, S, c, f l

where, P denotes the processor specifications of the node which
includes details such as processing core speed, bus specifications,
and internal register (cache memory) size. The primary memory
(RAM) specifications, such as memory size, memory clock, and
data rate are stored in M. The tuple B describes the battery
details, namely voltage, size (AA or AAA), type (Ni or C
electrodes), and the number of the battery-cells required. S is the
symbolic representation of the different types of sensors that are
used as sub-modules of the node. The tuple c denotes the
hardware used for wireless communication for the node, such as
Bluetooth and ZigBee. The frequency range in which the TN
operates is denoted by f.

The last tuple in the definition of a TN, I [q], is an 1D array (with q
elements) that stores the instance IDs of the application instances
which are running on the device. It may be noted that although
applications have independent existences, it is impossible for an
application instance to exist without the presence of a parent
IET Netw., 2016, Vol. 5, Iss. 2, pp. 23–29
& The Institution of Engineering and Technology 2016
device. We define the terms application and application instance
accordingly, as below.

Definition 6 (Application): An application A is defined as a
four-tuple

A = kAid, Atype, Aspl

where, Aid is the application ID and Atype denote the purpose for
which the application is used (such as medical, education, finance,
entertainment, utility, and gaming). Asp dictates the minimum
system specifications that are required to run the application
including the processor, primary memory, and secondary storage
details and the operating system version.

Definition 7 (Application instance): The instance of an application,
I , is defined as a five-tuple

I = kIid, Aid, Tid, Ist, Ireql

where, Iid is the application instance ID which can be thought of as
the process ID generated by the system. Aid and Tid bear the same
meanings as mentioned earlier. Ist is a boolean variable, such that
Ist = {0, 1}, where the values 0 and 1 are indicative of the
application instance being idle (not inactive) and active,
respectively. The final tuple Ireq is the resource requirement of the
application instance. This resource requirement may be in terms of
network bandwidth (for streaming applications), computation and
analysis ability (for medical applications), or storage and
processing power (for gaming applications). Multiple instances of
an application may concurrently run on a TN, and are
distinguished by their unique instance IDs.

Having defined all the physical components of tier 1, now we define
the term VC.

Definition 8 (VC): A VC, denoted by V, corresponds to a logical
boundary comprising of several localised TNs, and is
mathematically defined as a four-tuple

V = kVid, T [u], R, Fidl

where, Vid is the ID of the VC, and T [u] is a non-empty 1D array of
size u that stores the IDs of all the constituent TNs. It is evident that
the array should have a dynamic length, where the array length, at
any given time instant, is indicative of the number of TN that are
present in the VC, and the length changes as some mobile TNs
leave or join the cluster. The region monitored by a VC which
encloses all the intermediate TNs is denoted by R. It is worth
mentioning that for efficient monitoring of all the TNs we have
divided the geographic terrain into multiple non-overlapping
regions – each region mapped to a VC. The physical FI to which a
VC is mapped is referred to by the FI ID, Fid.

Property 2: The mapping from the set of VCs to the set of FIs,

represented as: f (·) : Ṽ � F̃ is injective.

We now define the term FI and the composite fog computing
modules which together constitute the middle tier.

Definition 9 (FI): A fog computing instance or simply a FI, denoted
by (F ), is mathematically defined as a three-tuple

F = kFid, CAP, D[v]l

where, Fid is the unique ID of the fog computing instance, and CAP is
the access point through which the FI is connected to the core cloud
computing framework. The third tuple,D[v] is a non-empty 1D array
of size v which stores the device IDs of all the constituent fog
computing devices of a FI.
25



Property 3: The mapping from the set of TNs to the set of FIs,
denoted as: f ′(·): T̃ � F̃ is many-to-one.

Definition 10 (Fog computing device): We define a fog computing
device, D, in terms of its type and characteristic features in the
form of a three-tuple

D = kDid, Dtype, Dspl

where, Did and Dtype are the ID and the type (such as gateway, router,
processing unit, or storage) of the fog computing device. The
hardware and related specifications of the device is stored in the
Dsp tuple.

Now that we have defined all the components of the fog computing
architecture, we analyse the demand of a VC before its parent FI. The
demand function, Ω( · ), is defined as

V(V) =
∑
i

V(T i), ∀i = 1(1)u

=
∑
i

∑
q

V(T i ≻ I j), ∀i = 1(1)u, ∀j = 1(1)q (1)

The operator ≻ is used to indicate successor relationship between a
pair of operands. For instance, X ≻ Y indicates Y is a successor of X.
Moreover, from definition (7), we get that
V(T i ≻ I j) = T i ≻ I j ≻ Ireq, ∀i, j. Based on this demand
function services are granted by the fog tier to the different
application instances running within the TNs. Only in special
cases, where intervention of the cloud core is mandatory, and for
periodic update purpose the cloud computing layer is accessed.

Proposition 1: The pairwise intersection of the VCs is null.

Proof: We prove this by the method of contradiction. We assume,
∃Vi, Vj, such that Vi

⋂
Vj = F. Thus

∃T k such that, T k [ Vi, Vj ⇒ T k [ Vi

⋂
Vj (2)

As per Property 2

f ′(T k ) = F p, F p [ F̃ ⇒ f −1(F p) = {Vi, Vj} (3)

which is absurd as per injectivity of Property 1. Thus, our
assumption is invalid. This concludes the proof. □

Proposition 2: At any given time instant, |T̃ | = |V1| + |V2|+
· · · + |Vm|, where |T̃ | denotes the total number of TNs present at
tier 1, |Vi| denotes the number of TNs mapped to the ith VC, and
m is the total number of VCs present in the system.

Proof: We prove the above by the method of contradiction. We
assume

|T̃ | = |V1| + |V2| + · · · + |Vm| (4)

This implies, there exists at least a pair (Vi, Vj), such that

Vi, Vj [ Ṽ, Vi

⋂
Vj = F (5)

which contradicts with Proposition 1, and disapproves our
assumption. This concludes the proof. □

Proposition 3: The mapping g(·) of the set of all TNs to the set of
VCs is surjective.

Proof: As per Properties 1, and 2, it is intuitive that ∀T i [ T̃ ,

∃Vj [ Ṽ, such that g(T i) = Vj. Therefore, ∀Vj [ Ṽ,
26
g−1(Vj) = K # T̃ . Now, if g−1(Vj) = F, length of Vj ≻ T [u] is
0. However, as per Definition 8, T [u] is non-empty. Thus, for
every Vj, there exists at least a single pre-image T i. This
concludes the proof of surjectivity for g(·). □
4 Performance metrics

In this section, we define the performance metrics for fog computing
based on which the analysis and comparison of this model against
the traditional cloud computing model is made.

4.1 Service latency

Service latency for a request sent by an application instance running
within an IoT device is basically its response time, and is computed
as the sum of the transmission latency and the processing latency for
the request. We assume that communication among multiple FIs at
tier 2, and that among different cloud data-centres at tier 3 take
place over high-bandwidth channel – leading to negligible delay.
Moreover, the communication delay among the TNs is taken to be
insignificant [26]. Let δtf and δfc be the delays in transmission of a
data packet from a TN to the corresponding FI, and from an FI to
the cloud data-centre, respectively. Thus, the mean transmission
latency, δfog, for the data packets of Ni application instances
running within Vi is given by

dfog = [dtfBi + dfcbi + dfcb
r
i + dtfb

r
i + dtf (Bi − bi)

r]/Bi (6)

where, Bi and bi (Bi > bi) are the total number of packets sent,
cumulatively, by Ni application instances to F i, and from F i to
the cloud data centres, respectively. Xr indicates the total number
of data packets that are sent as a response to X request data
packets. The mean transmission latency for an application instance
(Dtr

fog) request is given by

Dtr
fog =

dtf
∑w

i=1 [Bi + bri + (Bi − bi)
r]+ dfc

∑w
i=1 [bi + bri ]∑w

i=1 Bi
(7)

In a traditional cloud computing environment, the expression for the
same would be

Dtr
cloud =

dfc
∑w

i=1 [Bi + Br
i ]∑w

i=1 Bi

(8)

Processing latency for an application instance request is computed in
terms of the number of requests that are processed at the server end
prior to its service. We assume that at time t, Ni number of
application instances are running within Vi. Thus, for a total of w
VCs the total number of application instances served at the same
time is N =

∑w
i=1 Ni. D(Vi, I i) is the service delay of an

application instance, I i running within Vi, served by F i. Out of Ni

application instances we assume ni (Ni > ni) instances are
redirected the core cloud computing module for processing.
Intuitively, the total number of application instances processing at
the cloud-end at time t is n =

∑w
i=1 ni, and the processing latency

at the cloud end for each of these n application instances is
denoted as ∇(n). We obtain the mean processing latency of an
application instance running within Vi as

�Dfog(Vi, I i) = [NiD(Vi, I i)+ ni∇(n)]/Ni (9)

Now, as we take into consideration all the VCs (V1, V2, . . . , Vw)
present in tier 1, the expression for mean service latency (Dsr

fog)
boils down to

Dsr
fog =

∑w
i=1

�Dfog(Vi, I i)

w
(10)
IET Netw., 2016, Vol. 5, Iss. 2, pp. 23–29
& The Institution of Engineering and Technology 2016



Fig. 2 Analysis of service latency

a Transmission latency vs number of TNs
b Service latency vs number of TNs
c Service latency: fog vs cloud
In contrast, in a general cloud computing model, all N application
instances running at the user-end, directly communicate with the
core computing module, and require its constant involvement. The
mean processing latency of an application instance request (Dsr

cloud)
in this case is given by:

Dsr
cloud =

∑w
i=1 Ni

N
= ∇(N ) (11)
4.2 Energy consumption

The energy expended due to transmission of unit byte of data from
the bottom tier to the middle tier, and from the middle tier to the
cloud tier are denoted by gtf and gfc, respectively. The energy
required to process unit byte of data within the fog and cloud
computing tiers are denoted by αfog and αcloud, respectively. In a
fog computing environment, the rate of energy dissipation due to
transmission and processing of data packets is, therefore,
expressed as

Gfog(t) = gtf
∑w
i=1

∑t

j=1

Li(j)+ gfc
∑w
i=1

∑t

j=1

li(j)

[ ]/
t

+ afog

∑w
i=1

∑t

j=1

Li(j)+ acloud

∑w
i=1

∑t

j=1

li(j) (12)

where Λi( j) and li( j) (where li( j) > li( j)) be the total number of
bytes being transmitted from Vi to F i and from F i to the cloud
core at t = j, respectively.

On the other hand, in traditional cloud computing framework,
every byte of data are transmitted to the computing core for
analysis and storage. The corresponding energy dissipation rate
due to transmission and processing of the data is, thereby, given
Fig. 3 Upload cost against number of TNs

IET Netw., 2016, Vol. 5, Iss. 2, pp. 23–29
& The Institution of Engineering and Technology 2016
by the following equation.

Gcloud(t) = gtc
∑w
i=1

∑t

j=1

Li(j)

[ ]/
t + acloud

∑w
i=1

∑t

j=1

Li(j) (13)

where gtc demotes the energy required to transfer unit byte of data
from the bottom tier to the cloud data centres.
5 Performance evaluation

We perform an analysis of the fog computing paradigm based on the
metrics designed in Section 4, and compare its performance against
traditional cloud computing. We consider a system with 10 FIs
connected to a single CSP. The TNs are assumed to be uniformly
distributed among the VCs, the data generation rate from each TN
being 1 packet/s. Length of each data packet is taken as 65,536
bytes and the machine instruction size is assumed to be 64 bits.
Processing speed of the devices at the fog computing tier and the
cloud data centres are taken as 1256 MIPS (ARM Cortex A5) and
124,850 MIPS (Intel Core i7 4770k), respectively. Moreover, the
energy required to transmit a single data byte is taken to be 20 nJ,
whereas, the processing energy is assumed to be 10 J/GB data.
5.1 Service latency

The transmission latency of a data packet is based on the round trip
time between two terminals, and is computed as rtt(ms) = 0.03 ×
distance(km) + 5 [27]. We vary the percentage of applications
which require to access the cloud computing core, and plot the
cumulative transmission latency for all the nodes within a VC
against variable number of TNs. As shown in Fig. 2a, with the
Fig. 4 Server cost against number of transmitting TNs

27



Fig. 5 Flow diagram of real-life application service in a fog computing framework
increase of the number of TNs present at the lowest tier, the
cumulative transmission latency increases with a linear slope.
Moreover, as the percentage of applications routed towards the
CSP increases, the transmission latency is observed to increase.

In Fig. 2b, we observe that as the number of FIs decreases there is
a significant rise in service latency, and except for one case (where
number of FIs = 1), in all other cases the service latency is found
to be less than that in a traditional cloud computing environment.
However, when there is only a single FI present in the system, it
boils down to a bi-layered cloud computing architecture, which
yields a higher service latency as compared with that in
conventional cloud computing due to the additional layer overhead.

To provide a thorough contrast of the service latency for processes
running in fog computing (number of FIs = 8) and cloud computing
environments, we plot the transmission and processing latencies
along with the total service latency for both these environments in
Fig. 2c.

5.2 Energy consumption

In Fig. 3, we study that in a fog computing platform, as the
percentage of requests that are required to be redirected to the
cloud computing core is increased, the overall upload cost also
increases. It is observed that, the energy expended due to
transmission for the fog computing architecture is observed to be
lower than that for cloud computing. However, it can be fairly
concluded that if the number of low-latency IoT applications are
significantly less, the energy consumption in case of fog
computing will be higher than its counterpart.

The energy expended due to processing at the computing tier is
measured as the energy expended per hour to process the requests
sent to the computing core. In Fig. 4, it is observed that as the
number of requests referred to the cloud increases, the processing
energy increases almost linearly. In the context of IoT
applications, with approximately 25% of requests requiring
real-time services, the fog computing architecture is observed to
improve the mean energy consumption by 40.48%.
6 Application specific case studies

In this section, we discuss the real-life applicability of the fog
computing paradigm coupled with the traditional cloud computing
framework, and discuss few of its practical implementations. We
28
present a generic flow diagram in Fig. 5 which illustrates the
service flow for a real-life application being served by the fog
computing framework.
6.1 Smart vehicle management

Smart vehicle management is basically a technological fusion of
connected vehicle and smart traffic management. The connected
vehicular system thrives on real-time communication between the
on-road vehicles and the road-side access points. These
communications essentially take place over WiFi, 3G, 4G, or LTE
[28, 29] infrastructure. The vehicles are equipped which multiple
sensors which assess the road conditions, traffic congestion and
send the data to a local server. These data-feeds are analysed in
real-time and crucial location-aware information are provided to
the vehicles. Sensor-equipped parking lots which provides a priori
information about the availability and location of the parking slots
are also a part of this connected vehicular system. In a fog
computing framework, the location-aware data analysis would take
place within the co-located FI and low-latency service
provisioning is done from the fog tier without the intervention of
the cloud computing tier.

Smart traffic management system, the smart traffic lights interact
with the sensors which detect and estimate the traffic flow on the
roads and manages its light-cycle adaptively [7]. The FIs are
responsible for managing the traffic lights within a particular
region. Moreover, interaction between the neighbouring FIs are
required to maintain smooth traffic flow across regions. While all
the real-time latency-sensitive computations and analyses are
managed by the fog computing tier, the consolidate information
are later sent to the cloud computing core for long-term analysis of
the global traffic conditions.
6.2 Smart grids

Smart grids serve as another example which requires real-time
processing with very low latency. The lowest tier comprises of
heterogeneous electronic devices, such as electronic home
appliances, industrial machinery, computer servers, and plug-in
hybrid electric vehicles, which draw energy from the grid. The
smart metres govern the electricity consumption for each of these
devices and needs to send high volumes of data continuously over
time. The fog computing tier, in this scenario, could act as a local
IET Netw., 2016, Vol. 5, Iss. 2, pp. 23–29
& The Institution of Engineering and Technology 2016



data sink maintaining the demand–supply and consumption details,
and take care of all transactions within the region. These data are
later send to the cloud computing tier for permanent storage,
necessary aggregation, and global analysis [30]. By introducing
the intermediate fog computing tier, the load on the core cloud
computing module is greatly diminished and services are provided
from the fog computing tier without imposing any additional latency.
7 Conclusion

In this work, we theoretically modelled the fog computing
architecture, and analysed its performance in the context of IoT
applications. It was observed that for a system with large number
of real-time, low latency IoT applications running, the service
latency associated with fog computing was significantly lower than
that with cloud computing. Moreover, the rates of energy
dissipation due to transmission of data bytes to the computing
cores and subsequent analysis were noted to be considerably low.
It should be reiterated that fog computing is not a substitute of
cloud computing; rather anticipating the next generation IoT
applications and their huge demand of real-time services, fog
computing, in collaboration with the traditional cloud computing
model, will serve as a greener computing platform. Finally, our
future works involve characterisation of fog computing from the
perspective of resource management and virtualisation and
extension in the context of big data analysis involving Internet of
everything.
8 References

1 Armbrust, M., Fox, A., Griffith, R., et al.: ‘A view of cloud computing’, ACM
Commun. Mag., 2010, 53, (4), pp. 50–58

2 Rimal, B.P., Choi, E., Lumb, I.: ‘A taxonomy and survey of cloud computing
systems’. 5th Int. Joint Conf. on INC, IMS and IDC, Seoul, South Korea,
August 2009, pp. 44–51

3 Lai, C.-F., Wang, H., Chao, H.-C., et al.: ‘A network and device aware QoS
approach for cloud-based mobile streaming’, IEEE Trans. Multimedia, 2013, 15,
(4), pp. 747–757

4 MarketWatch: ‘Cisco delivers vision of fog computing to accelerate value from
billions of connected devices’, available at http://www.theiet.org/resources/
journals/research/index.cfm, accessed August 2014

5 Hong, K., Lillethun, D., Ramachandran, U., et al.: ‘Mobile fog: A programming
model for large-scale applications on the internet of things’. Proc. of the Second
ACM SIGCOMM Workshop on Mobile Cloud Computing, Hong Kong, China,
August 2013, pp. 15–20

6 Preden, J., Kaugerand, J., Suurjaak, E., et al.: ‘Data to decision: pushing situational
information needs to the edge of the network’. IEEE Int. Inter-Disciplinary Conf.
on Cognitive Methods in Situation Awareness and Decision Support, Orlando,
USA, March 2015, pp. 158–164

7 Bonomi, F., Milito, R., Zhu, J., et al.: ‘Fog computing and its role in the internet of
things’. Proc. of the First Edition of the MCC Workshop on Mobile Cloud
Computing (ACM), Helsinki, Finland, August 2012, pp. 13–16

8 Bonomi, F., Milito, R., Natarajan, P., et al.: ‘Fog Computing: A platform for
internet of things and analytics’, in Bessis, N., Dobre, C. (Eds.): ‘Big data and
internet of things: a roadmap for smart environments – part I’ (Springer
International Publishing, Switzerland, 2014), vol. 546, pp. 169–186
IET Netw., 2016, Vol. 5, Iss. 2, pp. 23–29
& The Institution of Engineering and Technology 2016
9 Madsen, H., Albeanu, G., Burtschy, B., et al.: ‘Reliability in the utility computing
era: Towards reliable fog computing’. 20th Int. Conf. on Systems, Signals and
Image Processing, Bucharest, Romania, July 2013, pp. 43–46

10 Nishio, T., Shinkuma, R., Takahashi, T., et al.: ‘Service-oriented heterogeneous
resource sharing for optimizing service latency in mobile cloud’. Proc. of the
First Int. Workshop on Mobile Cloud Computing and Networking,
MobileCloud, Bangalore India, July 2013, pp. 19–26

11 Stolfo, S.F., Salem, M.B., Keromytis, A.D.: ‘Fog computing: Mitigating insider
data theft attacks in the cloud’. IEEE Symp. on Security and Privacy
Workshops, San Francisco, USA, May 2012, pp. 125–128

12 Preden, J.S., Tammemae, K., Jantsch, A., et al.: ‘The benefits of self-awareness and
attention in fog and mist computing’, Comput. Mag., 2015, 48, (7), pp. 37–45

13 Yi, S., Li, C., Li, Q.: ‘A survey of fog computing: concepts, applications and
issues’. ACM Proc. of the 2015 Workshop on Mobile Big Data, Hangzhou,
China, June 2015, pp. 37–42

14 Dsouza, C., Ahn, G.-J., Taguinod, M.: ‘Policy-driven security management for fog
computing: Preliminary framework and a case study’. IEEE 15th Int. Conf. on
Information Reuse and Integration, Redwood City, USA, August 2014, pp. 16–23

15 Kulkarni, S., Saha, S., Hockenbury, R.: ‘Preserving privacy in sensor-fog
networks’. 9th Int. Conf. for Internet Technology and Secured Transactions,
London, UK, December 2014, pp. 96–99

16 Do, C.T., Tran, N.H., Pham, C., et al.: ‘A proximal algorithm for joint resource
allocation and minimizing carbon footprint in geo-distributed fog computing’.
Int. Conf. on Information Networking, Cambodia, January 2015, pp. 324–329

17 Aazam, M., Eui-Nam, H.: ‘Dynamic resource provisioning through Fog micro
datacenter’. IEEE Int. Conf. on Pervasive Computing and Communication
Workshops, St. Louis, USA, March 2015, pp. 105–110

18 Aazam, M., Eui-Nam, H.: ‘Fog computing micro datacenter based dynamic
resource estimation and pricing model for IoT’. IEEE 29th Int. Conf. on
Advanced Information Networking and Applications, Gwangiu, South Korea,
March 2015, pp. 687–694

19 Krishnan, Y.N., Bhagwat, C.N., Utpat, A.P.: ‘Fog computing — Network based
cloud computing’. 2nd Int. Conf. on Electronics and Communication Systems,
Coimbatore, India, February 2015, pp. 250–251

20 Misra, S., Chatterjee, S., Obaidat, M.S.: ‘On theoretical modeling of sensor-cloud:
a paradigm shift from wireless sensor network’, IEEE Syst. J., 2014, pp. 1–10,
doi: 10.1109/JSYST.2014.2362617

21 Dong, H., Hao, Q., Zhang, T., et al.: ‘Formal discussion on relationship between
virtualization and cloud computing’. Int. Conf. on Parallel and Distributed
Computing, Applications and Technologies, Wuhan, China, December 2010,
pp. 448–453

22 Liu, N., Li, X., Wang, Q.: ‘A resource & capability virtualization method for cloud
manufacturing systems’. IEEE Int. Conf. on Systems, Man, and Cybernetics,
Anchorage, USA, October 2011, pp. 1003–1008

23 Sotomayor, B., Montero, R.S., Llorente, I.M., et al.: ‘Virtual infrastructure
management in private and hybrid clouds’, IEEE Internet Comput., 2009, 13,
(5), pp. 14–22

24 Yannuzzi, M., Milito, R., Serral-Gracia, R., et al.: ‘Key ingredients in an IoT
recipe: Fog Computing, Cloud computing, and more Fog Computing’. Athens,
Greece, December 2014, pp. 325–329

25 Stojmenovic, I.: ‘Fog computing: A cloud to the ground support for smart things
and machine-to-machine networks’. Australasian Telecommunication Networks
and Applications Conf., Southbank, Australia, November 2014, pp. 117–122

26 Zhang, L., Wu, C., Li, Z., et al.: ‘Moving big data to the cloud: An online
cost-minimizing approach’, IEEE J. Sel. Areas Commun., 2013, 31, (12),
pp. 2710–2721

27 Qureshi, A.: ‘Power-demand routing in massive geo-distributed systems’. PhD
thesis, MIT, 2010

28 Zhu, J., Chan, D.S., Prabhu, M.S., et al.: ‘Improving web sites performance using
edge servers in fog computing architecture’. IEEE 7th Int. Symp. on Service
Oriented System Engineering, Redwood City, USA, March 2013, pp. 320–323

29 Vaquero, L.M., Rodero-Merino, L.: ‘Finding your way in the fog: towards a
comprehensive definition of fog computing’, ACM SIGCOMM Comput.
Commun. Rev., 2014, 44, (5), pp. 27–32

30 Stojmenovic, I., Sheng, W.: ‘The Fog computing paradigm: Scenarios and security
issues’. Federated Conf. on Computer Science and Information Systems, Warsaw,
Poland, September 2014, pp. 1–8
29


