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ABSTRACT
A key driver of modern data systems is the requirement for fast
ingestion while ensuring low-latency query processing. This
has led to the birth of write-optimized data stores that realize
ingestion (inserts, updates, and deletes) in an out-of-placemanner.
Deletes in such out-of-place data stores are performed logically
via invalidationwhile retaining the invalidated data for arbitrarily
long. At the same time, with new policy changes, such as the
introduction of the right to be forgotten (in EU’s GDPR), the right
to delete (in California’s CCPA and CPRA), and the deletion right
(in Virginia’s VCDPA), the importance of timely and persistent
deletion of user data has become critical.

In this paper, we point out that state-of-the-art query lan-
guages lack the necessary support to express a user’s preferences
for data retention and deletion. Toward this, we first identify two
classes of deletes: (i) retention-based deletion and (ii) on-demand
deletion, that need to be supported for regulation compliance.
Next, we present the challenges in transforming these user dele-
tion requirements into application-level specifications. For this,
we propose query language extensions that can express both on-
demand and timely persistent deletion of user data. Finally, we
discuss how the application and system level modifications work
hand-in-hand under the privacy regulations and act as stepping
stones toward designing deletion-compliant data systems.

1 INTRODUCTION
Disruptive technological advancements across domains of com-
puter science, such as the Internet-of-things, edge computing,
5G communications, and autonomous vehicles, generate a vast
amount of personal data that is processed at large by the data com-
panies [23, 31, 55]. The increasing demand for efficient collection,
storage, and processing of user data has driven the development
of data systems that can sustain high ingestion rates without com-
promising the ability to analyze the data quickly. Furthermore,
modern data systems are designed around the assumption of
perpetual data retentionwith no latency-bounds on the time taken
to physically delete a data object.
TheOut-of-Place Paradigm.To support fast data ingestion and
efficient data access, modern data system designs heavily rely on
the out-of-place paradigm, which (i) is highly optimized for writes
and (ii) offers low-latency query processing, (iii) without causing
read/write interference. Thus, the out-of-place paradigm has been
adopted in several relational and array-based data stores [13, 26,
30, 36, 38, 41, 44, 53, 64], and NoSQL data stores [8, 10, 12, 25, 28,
29, 34, 37, 59].

Relational and Array-based Systems. Relational systems, that
buffer updates before applying them lazily to the base data, fol-
low the out-of-place paradigm. Data stores in Vertica [44, 64],
SciDB [51, 65], and TileDB [50, 67] use an in-memory storage
to buffer incoming inserts, updates, and deletes out of place and
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apply the changes lazily to the disk. Similarly, the state-of-the-art
column-store system MonetDB [38] uses an in-memory posi-
tional index for incoming data [36]. SAP HANA uses a delta store
per table to facilitate fast ingestion without affecting its read-
optimized data layout [30]. Several research prototypes also pro-
pose using a separate delta store on faster storage (e.g., SSD/NVM)
to offer efficient access to incoming data [13, 14, 26, 41, 53].

NoSQL Systems. Production-grade NoSQL key-value stores of-
ten employ the out-of-place paradigm. Key-value stores such as
Facebook’s RocksDB [28, 29], LevelDB [35] and BigTable [21] at
Google, X-Engine [37, 70] at Alibaba, Voldemort [45] at LinkedIn,
Amazons’s DynamoDB [25], Cassandra [12], HBase [11], and
Accumulo [10] at Apache, and bLSM [59] and cLSM [34] at Ya-
hoo are based on the heavily write-optimized out-of-place data
structure LSM-tree [46, 49, 71]. Other examples include B+-tree,
Bϵ -tree, and fractal tree-based storages with buffer-support, such
as COLA [15], TokuDB [43], and BertFS [39].
Deletes in Out-of-Place Systems. Contrary to common per-
ception, deletion is a frequent operation in modern relational and
NoSQL data stores. For example, ZippyDB, which is a distributed
key-value engine that stores metadata for images and videos,
processes 25.2M delete requests over a 24-hour window – this is
6% of the entire workload [19]. Out-of-place systems treat deletes
(and updates) similarly to inserts, i.e., instead of deleting entries
in place, they insert a new version of the entry to be deleted,
which logically invalidates the older target entries. These special
entries that are responsible for logical deletes are termed delete
markers [64] or tombstones [28, 56].

Logical deletion of data is an out-of-place operation by defini-
tion, and it does not necessarily persistently remove the data to
be deleted. Instead, the logically invalidated entries are retained
in the data store for arbitrarily long with the optimistic hope of
eventual persistent deletion [56]. In fact, most out-of-place data
stores are built with the underlying assumption of perpetual data
retention, in order to gain more insights from the user and organi-
zational data [69]. Logical updates are applied lazily too, however,
the implications of out-of-place deletes are critical in terms of
the privacy regulations, and thus, are our main focus.
The Legal Frontier. Over the past decade, there have been sev-
eral government-driven endeavors across the globe aiming to
protect the privacy of user data and to put back the users in
the control of their personal data. On the legal side, regulations,
such as the EU’s GDPR [2], California’s privacy protection acts –
CCPA [3] and CPRA [6], and Virginia’s VCDPA [7] mandate data
companies to ensure privacy through deletion. GDPR’s right to be
forgotten, CCPA and CPRA’s right to delete, and the deletion right
in VCDPA particularly focus on persistent on-demand deletion of
user data in a timely manner [9, 27, 33, 40, 54, 58, 62, 68].
The Technological Roadblock. Treating deletes as first-class
citizens is a new requirement for the data systems community, and
it requires a significant amount ofwork to transform classical data
systems to be delete-efficient. In fact, despite using state-of-the-
art data engines, data companies face critical challenges as they
attempt to demonstrate compliance with the deletion-regulations
and realize efficient on-demand user data deletion [60, 61, 63].
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CREATE	TABLE	R	(column1	type1,
				column2	type2,	...)	
WITH	FIXED	RET_DUR	{t1	45,	t2	60};

CREATE	TABLE	T	(column1	type1,
				column2	type2,	...)	
WITH	DPT	FIXED	{d1	180,	d2	365};
	
DELETE	FROM	T	
				WHERE	column1	=	val1
								WITH	DPT	d1;

INSERT	INTO	S	(val1,	val2,	...)	
				WITH	RET_DUR	t2;

Fig. 1: Enforcing privacy regulations requires a bridge between their requirements and the necessary system support via
an application layer augmented with richer deletion specification.

To translate this into numbers, between January 2020 and Jan-
uary 2022, the penalties under GDPR paid by data companies
amounted to $1.2B, which includes large contributions from com-
panies such as Amazon ($877M), WhatsApp ($255M), Google
Ireland ($102M), and Facebook ($68M) [47, 66]. To demonstrate
compliance and to ensure timely persistent deletion of user data,
many companies end up performing expensive database-wide
consolidations periodically (e.g., every few weeks) [56, 57]. Such
operations are remarkably expensive in terms of time and money,
cause undesirable latency spikes, and hence, should be avoided.
Challenge: No Application Layer Support. The legal regula-
tions outline the users’ rights for timely deletion of their personal
data, and thereby, lay the platform for privacy through deletion
(Fig. 1: Policy layer). At the other end, recent endeavors at the sys-
tems level have been opportunistic in addressing specific delete
use-cases to facilitate timely persistent data deletion (Fig. 1: Sys-
tem layer) [24, 48, 56]. To bridge the two, we need to (i) extract
the user requirements from the policy layer and (ii) address the
fact that the application layer lacks the query language support
to convey user deletion preferences to the underlying system.
Identifying Deletion Requirements.We extract from the pol-
icy layer two classes of deletion requirements (Fig. 1: Require-
ments layer). The first class entails deletion of user data older
than a specified retention duration from across all domains
of a service provider. The second class pertains to on-demand
deletion of user data from the providers’ domains. Realizing
retention-based deletes entails periodically invoking a deletion
task that persistently deletes data older than the retention dura-
tion. On the other hand, on-demand deletion requests must be
applied within a set time period based on the legal regulations
(e.g., 45-60 days), persistently removing all data of a user.
Query Language Support for Timely Deletes. Next, we pro-
pose an extension of SQL in order to capture the new deletion
requirements (Fig. 1:Application layer). We augment the SQL data
definition language (DDL) to express the (i) retention duration of
data (for retention-based deletes) and (ii) the threshold for persis-
tent data deletion (for on-demand deletes) during creation of a
table. Further, we extend the INSERT data manipulation language
(DML) to express the specific retention durations associated with
the entries ingested. We also extend the DELETE DML to express
the threshold time limit within which any logical deletes must be

persisted, physically removing the target data entries from the
database. Based on this information from the application layer,
the underlying storage engine is made aware of the user deletion
requirements, which are then realized at the system level.
Contributions. The contributions of our work are as follows.

• We identify the two classes of user delete requirements for
which there is lack of query language support.

• We augment SQL to support retention-based deletes based
on either arbitrary or predefined retention durations.

• We further augment SQL to facilitate on-demand deletion
based on either arbitrary or a predefined set of delete persis-
tence thresholds.

2 BACKGROUND & MOTIVATION
Recent changes in the legal landscape of data privacy protec-
tion call for a transformation on data management and storage.
More specifically, supporting the regulatory requirements for
privacy through timely and persistent data deletion has become a
fundamentally pressing issue for data management systems.

2.1 Regulations on Timely Data Deletion
We particularly focus on the legal policies concerning data re-
tention and data deletion, as we aim to ensure privacy through
deletion. Below, we present the different active deletion rights.
Right to be Forgotten, EU/UK GDPR. The General Data Pro-
tection Regulation (GDPR) has revolutionized the data privacy
landscape for the EU countries and the UK [1, 2, 4, 54]. A funda-
mental component of the GDPR is the right to be forgotten, which
empowers users with the right to request a service provider to
delete their personal data persistently [1, 2]. Service providers
must comply with the erasure requests within 30-60 days.
Right to Delete, CCPA, CPRA. The California Customer Pro-
tection Act (CCPA) and the California Privacy Rights Act (CPRA)
allow the users/consumers in California to request from the ser-
vice providers to permanently delete all their personal data [3, 6].
The service providers must acknowledge such a request within
10 days, and respond to it within 45 days [18]. Persistent deletion
must remove the target data across all domains, barring archive
and backup systems, and anonymize the data as required.
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Right to Delete, VCDPA. Similarly to CCPA, the Virginia Con-
sumer Data Protection Act (VCDPA) empowers users in Virginia
to exercise their right to delete their personal data from the
providers’ domain [7]. VCDPA requires the service providers to
serve a delete-request from a user within 45 business days [18].
Other Efforts. Among other countries, Argentina [20, 52], Sin-
gapore [22], India [42], Canada [5], and South Korea [17] also
have some implementation of the right to deletion as a part of
their respective privacy protection acts.

2.2 Limitations of Query Languages
Wenowpresent two real-life scenarios to highlight the limitations
of state-of-the-art query languages with respect to supporting
timely and on-demand deletion of data.
Scenario 1. Alice uses a smart-home ecosystem, HomeComp,
that provides real-time services including video surveillance and
remote temperature and illumination control. Alice is concerned
about her personal data privacy, and she wants HomeComp to
delete all her data older than 30 days.

The problem? Like most service providers, HomeComp’s data
model is built around the assumption of perpetual data retention;
deletion of user data needs a human-in-the-loop that performs
the necessary actions. Further, state-of-the-art SQL syntax does
not provide to the application developers the tools to express
the need for periodic data deletion. Overall, HomeComp cannot
facilitate user requests for retention-based data deletion.
Scenario 2. StreamEra provides real-time insights for data streams,
and allows its users to request on-demand deletion of their per-
sonal data, as it is bound by the right to be forgotten. StreamEra
uses an SQL-based wrapper on top of its storage layer.

The problem? While StreamEra wants to serve its users by
ensuring timely persistent deletion of their personal data, SQL
does not provide support for such an operation. The backend
developers at StreamEra are expected to implement the required
functionality at the application level as it is not native to SQL.
What’s missing? The above scenarios demonstrate that despite
(i) legally enforcing user data retention limits and (ii) the system-
level efforts to facilitate persistent and timely deletion of data,
there is a missing link in the intermediate application layer. This
work presents a new set of SQL extensions which expresses
the policy requirements for both retention-driven deletes and
on-demand data deletion, bridging the deletion policy with the
system capabilities to support timely data deletion.

3 EXTENDING SQL SUPPORT
We now present in detail the application layer modifications
necessary to bridge the gap between the legal framework and
the system support for timely deletion. We first identify the two
classes of deletion requests that the providers must facilitate
in order to demonstrate regulation compliance (§3.1). Next, we
introduce a new set of application layer tools by augmenting SQL
to capture and transform the user-requirements for deletes (§3.2).

3.1 Types of Deletion Requests
Based on the retention regulations, we classify the user delete
requests into two categories: (a) retention-driven and (b) on de-
mand (Fig. 1: Requirements layer).
Retention-driven deletes. Deletes of this class are rolling in
nature and enable persistent deletion of user data that is older
than a pre-set retention duration. The retention duration serves as
the lifetime of data within a service provider’s domain. In practice,

the retention duration is suggested by the service provider as
part of the service level agreement (SLA), and users can specify
the granularity of rolling deletes as preferred.
Deletion on-demand. The delete-regulations also allow users
to submit on-demand deletion requests which entails persistent
deletion of a user’s personal data. Such deletion requests can be
submitted through an API provided by a service provider. Upon
request, the target data is purged persistently within a threshold
period, set by the regulations and as specified in the SLA.

3.2 SQL Support for Deletes
With the legal framework in place and the user preferences about
deletion accounted for, we now translate the user requirements
to new SQL constructs. The proposed extensions can be also
integrated into other query languages, like GraphQL, DMX, LINQ,
and N1QL, with simple template modifications.

Goal. The objective of the proposed SQL extension is three-fold.
1. Supporting retention-driven deletion: We first augment the

CREATE TABLE and INSERT SQL statements to bind every
ingestion to a specific retention duration, after which the
inserted data is deleted.

2. Ensuring timely persistence of on-demand deletes: We further
augment the CREATE TABLE and the DELETE SQL statements
to facilitate on-demand deletion requests with timely persis-
tence guarantees.

3. Supporting arbitrary delete thresholds: Lastly, we extend the
SQL support described above for both fixed and arbitrary
retention durations and delete persistence thresholds.

Augmenting SQL. Supporting timely and persistent data dele-
tion requires augmenting both the data definition language (DDL)
and the data manipulation language (DML) parts of SQL.
Enabling retention-driven deletes.To support retention-driven
data deletion, we extend (i) the CREATE TABLE DDL and (ii) the
INSERT DML in SQL. The CREATE TABLE statement now allows
an application developer to specify the different retention dura-
tions supported as a table-property.

CREATE TABLE R (column1 type1, column2 type2, ...)
WITH RET_DUR FIXED (t1 <ret1>, t2 <ret2>, ...);

The above SQL statement creates a table R that supports retention-
based deletes with specific retention durations of ret1, ret2, etc.
The WITH RET_DUR clause is optional, and is only necessary for
tables that need to support deletes with predefined retention
durations. When a table supports a predefined set of retention
durations, each INSERT statement can use only one of those. For
example, a table that is configured to support retention durations
of 30 days and 60 days (CREATE TABLE R (...) WITH RET_DUR
FIXED (t1 ’30 days’, t2 ’60 days’);), can only receive
inserts with retention durations t1 or t2. An ingestion without
a retention period explicitly mentioned is kept perpetually fol-
lowing the logic of a classical insert. Note that, in general, the
predefined retention durations stem from the delete-SLAs that a
specific application requires. Following is the syntax for inserts.

INSERT INTO R (val1, val2, ...)
WITH RET_DUR t<i>;

Support for arbitrary retention durations.We further extend
SQL to support arbitrary retention durations for deletes. To do
so, we add the ARBITRARY keyword to both the CREATE TABLE
and INSERT statements. Supporting arbitrary retention durations
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is common in distributed frameworks that replicate data across
physical data stores in different geographic locations, each bound
by different regulatory requirements. Below, we present the full
syntax for the proposed SQL extensions.

CREATE TABLE R (column1 type1, column2 type2, ...)
WITH RET_DUR
{ARBITRARY | FIXED (t1 <ret1>, t2 <ret2>, ...)};

INSERT INTO R (val1, val2, ...)
WITH RET_DUR { <t> | t<i> } ;

Note that having a pre-defined set of retention durations provides
more information to the system compared to allowing arbitrary
durations. As a result, it allows the system to better prepare to
offer efficient retention-driven deletes.

Enabling timely on-demand deletion. To support on-demand
data deletion in a timely manner, we introduce the notion of
delete persistence threshold (DPT), which denotes the maximum
delay between a logical delete and its persistence. Each table can
provide support for several such user-defined thresholds. Simi-
larly to retention-based deletes, we also extend SQL to support
arbitrary DPTs when the DPTs are not specified a priori. Below,
we outline the modifications to the DDL and DML necessary to
support on-demand timely deletion requests.

CREATE TABLE S (column1 type1, column2 type2, ...)
WITH DPT
{ARBITRARY | FIXED (d1 <dpt1>, d2 <dpt2>, ...)};

DELETE FROM S WHERE (...)
WITH DPT { <d> | d<i> };

Table S can support several DPTs (dpt1, dpt2, etc.), if the DPTs
are specified before-hand, and applications can trigger on-demand
deletion with any DPT through the DELETE command. Similarly
to retention-driven deletes, timely persistent on-demand deletion
is easier to handle from a storage engine if the DPTs supported
are known a priori during the table creation.
Putting everything together. Putting the proposed DDL ex-
tensions together, a table can support multiple (pre-defined or
arbitrary) thresholds for both retention-based and on-demand
deletes. The complete syntax for CREATE TABLE is as follows.

CREATE TABLE T (column1 type1, column2 type2, ...)
WITH RET_DUR
{ARBITRARY | FIXED (t1 <ret1>, t2 <ret2>, ...)};
WITH DPT
{ARBITRARY | FIXED (d1 <dpt1>, d2 <dpt2>, ...)};

Note that retention-based deletes come from the application re-
quirements, and on-demand deletion requests are issued by the
user. Further, note that while these SQL extensions allow us to
express deletion preferences, they rely on the system layer to
correctly realize them.

4 DISCUSSION
We now briefly discuss efforts on supporting timely deletes on
the systems layer and the key open challenge of demonstrating
regulation compliance.
Storage Layer Endeavors. Realizing timely deletes without
hurting performance of the underlying storage engines is critical.
The efficiency of deletion depends on (i) the schema and the
physical data layout, (ii) the data re-organization strategy, (iii)
the workload, and (iv) the storage engine tuning.

On-demand deletes in NoSQL engines. Deletes issued on the
attribute based on which the data is organized (sorted, hashed, or

range partitioned) are generally realized logically by invalidating
prior entries. To persist such logical deletes in a timely manner,
prior work proposes a data layout reorganization policy that en-
ables LSM-based key-value stores to persist logical deletes within
a given threshold through a process called compaction [56]. The
work introduces a family of deletion-aware compaction strategies
that prioritizes compaction of files based on the delete persistence
threshold, and thus, honors the requirement for timely purging
of deleted data. Piggybacking deletion with the process of data
layout reorganization reduces the cost of realizing deletes while
ensuring timely delete persistence without hurting performance.

Deletes in online social networks. Cohn-Gordon et al. proposed
a deletion framework DELF that ensures reliable data deletion
from an online social network (OSN) [24].DELF enables detection
of inconsistent data deletion in OSNs and also facilitates data
recovery in cases where user data was incorrectly deleted. Minaei
et al. [48] proposed a framework for persistently deleting all
instances of a user’s data in presence of observers, ensuring
privacy through timely content concealment and removal.

Deletes on Secondary Attribute. Deletes issued on a different
attribute (or on attributes that have no particular organization)
are hard to facilitate, as they require inspection of all data objects
in a data store, which is very costly. Efficient realization of such
delete requests requires arranging the data on disk with some
order based on the deletion attribute. In relational data stores,
the records can be re-arranged on disk as re-sorted on the delete
attribute, or they can be indexed based on the delete attribute to
facilitate such operations [16, 32]. In NoSQL key-value stores, an
inter-weaved data layout helps clustering the qualifying entries,
which allows invalidating entire blocks of data at a time, facili-
tating efficient garbage collection [56]. The intuition here is to
create a logical data collection of consecutive disk pages, within
which the entries are sorted based on the delete attribute.
Compliance. Proving compliance is a known challenge when
regulations meet technology, as this entails tracking data access
patterns and execution paths within a data system. Current so-
lutions demonstrate regulation-compliance through inspection
of code, data, and legal substantiation. Another way is to be
able to quickly inspect the data (essentially via querying and
accessing data files) while ensuring timely garbage collection for
the deleted data. However, providing system-level guarantees
on timely data deletion is challenging as it entails tracking the
data-flow within a system and secure data deletion at the device
level. In the longer term, the community should work toward
building system-tools with light-weight checks that can prove
deletion compliance. This remains an open research challenge in
the systems and database community.

5 CONCLUSION
In this paper, we point out that state-of-the-art query languages
lack the necessary tools to express new legally mandated re-
quirements for user data deletion. Toward this, we identify the
two classes of deletion requirements that need to be supported.
We then identify the missing links at the application layer and
present the modifications made to the SQL DDL and DML to
facilitate both retention-based and on-demand user data deletion.
Finally, we discuss, how the proposed query language extensions
work hand-in-hand with legal regulations and system solutions
for persistent data deletion to ensure privacy through deletion.
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