
Compactionary: A Dictionary for LSM Compactions
Subhadeep Sarkar
Boston University, USA

ssarkar1@bu.edu

Kaijie Chen
Boston University, USA

kaijiec@bu.edu

Zichen Zhu
Boston University, USA

zczhu@bu.edu

Manos Athanassoulis
Boston University, USA

mathan@bu.edu

ABSTRACT
Log-structured merge (LSM) trees are widely used as the storage
layer of modern NoSQL data stores, as they offer efficient ingestion
performance. To enable competitive read performance and reduce
space amplification, LSM-trees re-organize data layout on disk iter-
atively, through compactions. Compactions are at the heart of every
LSM-based storage engine, fundamentally influencing their perfor-
mance in terms of write amplification, write throughput, point and
range lookup performance, space amplification, and delete perfor-
mance. However, the process of compaction in LSM-engines is often
treated as a black-box that is rarely exposed as a tuning knob. In
this paper, we demonstrate Compactionary, a dictionary for LSM
compactions, that helps to visualize the implications of compactions
on performance for different workloads and LSM tunings.

Compactionary breaks down the LSM compaction black-box,
expressing compactions as an ensemble of four first-order design
choices: (i) when to compact, (ii) how to organize the data after
compaction, (iii) how much data to compact, and (iv) which data to
compact. We configure Compactionary to demonstrate the opera-
tional flow of a family of state-of-the-art LSM compaction strategies
and how each strategy influences the performance of the storage
engine. The participants can (i) customize the workload, (ii) con-
figure the LSM tuning, and (iii) switch between advanced com-
paction options, to understand individually the impact of the dif-
ferent factors on performance. Further, to engage the interested
participants, we extend the demonstration by allowing the par-
ticipants (i) to create custom hybrid compaction strategies, as well
as (ii) to configure the settings separately for each strategy in an
individual analysis phase. The demo is available at https://disc-
projects.bu.edu/compactionary/#interactiveDemo.
ACM Reference Format:
Subhadeep Sarkar, Kaijie Chen, Zichen Zhu, and Manos Athanassoulis.
2022. Compactionary: A Dictionary for LSM Compactions. In Proceedings
of the 2022 International Conference on Management of Data (SIGMOD ’22),
June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3514221.3520169

1 INTRODUCTION
Background. Log-structured merge (LSM) trees are widely used
as the storage layer of several modern NoSQL, relational, and array-
based data stores [2, 3]. LSM-based data stores offer high throughput

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3520169

for ingestion by batching writes in memory and good utilization
of disk space by using immutable file structures to store data on
disk [1]. To facilitate efficient query processing, LSM-trees periodi-
cally re-organize the data layout on disk, through the process of
compactions [4, 5]. Compactions affect the performance of LSM-
engines along several axes, including write throughput, point and
range query performance, space and write amplification, and even,
deletion performance [6].
Problem and Motivation. Despite compactions being critical to
LSM performance, the process of choosing an appropriate com-
paction strategy requires a human in the loop. In practice, decisions
on how to (re-)organize data on disk, and thereby, which compaction
strategies to use are often subject to the expertise of the engineers
or the database administrators. This is largely due to two reasons.
(A) The process of compaction in LSM-trees is often treated as a
black-box and is rarely exposed as a tunable knob. While the LSM
compaction design space is vast, the lack of a formal template for
compactions leads to heavy reliance on individual expertise, and
leaves a large part of the design space unexplored. (B) There is a lack
of analytical and experimental data on how compactions influence
the performance of LSM engines subject to different workloads
and LSM tunings. Relying on human expertise to hand-pick the
appropriate compaction strategies for each application does not
scale, especially for large-scale system deployments.
Approach. The research that led to this demo paper, pursues the
fundamental theory of decomposing LSM compaction strategies
into first-order primitives, and thereafter, analyzing the perfor-
mance implications of the compaction primitives subject to dif-
ferent workload characteristics and LSM tunings [6]. Specifically,
our prior work formally constructs the design space of LSM com-
pactions and provides key insights on how compactions are central
to the overall performance of LSM engines.

Toward this, we introduce Compactionary, a demonstration
framework that showcases side-by-side (A) the operational flow
of different state-of-the-art compaction strategies and (B) how the
different compaction strategies affect performance. The partici-
pants can (i) change the workload composition (such as, entry size,
ingestion count, and filter memory size), (ii) configure the LSM
tuning (such as, size ratio of a tree, buffer size, and page size),
and (iii) switch between advanced compaction options (such as,
enable/disable background compactions and threshold for back-
ground compactions) to understand the physical interpretation of
the several degrees of freedom embedded with the LSM compaction
logic. Further, an extended demonstration panel allows the par-
ticipants to individually configure the settings for different com-
paction strategies enabling a low-level analysis of the strategies.
Lastly, Compactionary also allows the interested participants to
create their own custom compaction strategies with hybrid data

https://disc-projects.bu.edu/compactionary/#interactiveDemo
https://disc-projects.bu.edu/compactionary/#interactiveDemo
https://doi.org/10.1145/3514221.3520169
https://doi.org/10.1145/3514221.3520169

layout and compaction granularity, and explore parts of the un-
charted design space of LSM compactions. The demo is available at
https://disc-projects.bu.edu/compactionary/#interactiveDemo.
Goal. The goal of this demonstration is to visualize LSM com-
pactions to understand when and how LSM engines perform com-
pactions, and the impact of compactions along 14 performance
metrics. Toward this, we break down the compaction black-box
into four first-order design primitives and discuss how any state-
of-the-art and even new compaction strategies can be expressed as
an ensemble of the primitives. Compactionary provides the partic-
ipants with the necessary infrastructure to compare different LSM
compaction strategies, understand the impact of each compaction
primitive, and through this process, build useful insights on how
to choose appropriate compaction strategies based on workloads,
LSM tunings, and the target performance. To our knowledge, this
is the first demonstration that reveals the internals of the LSM
compaction black-box, and provides useful insights to the LSM-
interested researches and practitioners.
Paper Organization. The rest of the paper is organized as follows.
Section 2 presents the overview of Compactionary and the design
space of LSM compactions. Section 3 introduces the key compo-
nents and functionalities of the demonstration user interface (UI).
The demonstration scenarios are discussed in Section 4. Finally,
Section 5 concludes the paper.

2 LSM COMPACTIONS
Compactionary taps into the internals of state-of-the-art LSM com-
paction strategies and identifies the fundamental design choices
made under the compaction black-box. Toward this, we present
the four first-order design primitives for LSM compactions and
present how combinations of the primitives help construct different
compaction strategies, and thereby, the LSM compaction design
space [6]. Compactionary exposes these primitives to the partic-
ipants as configurable knobs and expresses through closed-form
modeling how they affect the LSM performance.

2.1 Compaction Primitives
We define an LSM compaction strategy as an ensemble of four design
primitives representing the fundamental decisions about the physical
data layout on disk and the data (re-)organization policies.
1) Compaction trigger outlines the events that can initiate com-

pactions. The most common compaction trigger is based on the
degree of saturation of a level, which is defined as the ratio of the
data size (in bytes) in a level to the theoretical capacity of that
level (in bytes). Once the degree of saturation goes beyond a
pre-defined threshold, one or more immutable files from Level i
are marked for compaction. Other compaction triggers include
the staleness of a file, the tombstone-based time-to-live, and space
and read amplification.

2) Data layout determines the number of sorted runs per disk level.
The data layout is commonly classified as leveling and tiering.
With leveling, once a compaction is triggered in a level, the
file(s) marked for compaction are merged with the overlapping
file(s) from the next level. For tiering, each level may contain
more than one sorted run with overlapping key domains. Once
a compaction is triggered, all sorted runs in a level are merged

together and the result is written to the next level as a new
sorted run. A generalization of this idea allows each level to
separately decide between leveling and tiering, generating a
continuum of hybrid data layouts.

3) Compaction granularity determines the amount of datamoved
and merged during a single compaction job. One way to compact
data is by merging and moving all data from a level to the next
level, which is commonly referred to as full compaction. Al-
ternatively, many production-scale leveled LSM-based engines
employ partial compaction, where instead of moving a whole
level, a smaller chunk of data participates in every compaction.
The compaction granularity can be a single file or multiple files,
depending on the system design and the workload. Tiered LSM
designs typically compact data at the granularity of sorted runs,
compacting only runs from the same level.

4) Data movement policy determines which file(s) are to be cho-
sen for compaction in LSMs with partial compactions. A naïve
way to choose file(s) is by using a round-robin policy. To opti-
mize for lookups, many production data stores select the coldest
file(s) in a level for compaction. Another common optimization
goal is to minimize write amplification, where files with the
least overlap with the target level are chosen for compaction.
To reduce space amplification, some storage engines choose
files with the highest number of tombstones and/or updates.

Together, these primitives determine when and how to re-organize
the data layout on disk. Table 1 outlines the various options for each
compaction primitive as either adopted in production-scale LSM en-
gines or proposed in state-of-the-art LSM literature. The proposed
primitives can capture any state-of-the-art LSM compaction strat-
egy and can also synthesize new unexplored compaction strategies.

2.2 Compaction as an Ensemble of Primitives
Every compaction strategy takes one or more values for each of
the four primitives. The trigger, granularity, and data movement
policy are multi-valued primitives, whereas data layout is single-
valued. For example, a leveled LSM-tree (data layout) may perform
compaction at the granularity of a file, with compactions being
triggered if a level reaches its capacity. Once triggered, the data
movement policy chooses the file with the least overlap with the
parent level for compaction. Similarly, a tiered LSM may initiate
compactions when the number of sorted runs in a level reaches a
threshold, and compact all runs in the level to the next level.

Two compaction strategies are considered different from each
other if they differ in at least one of the four primitives. Compaction
strategies differing only on one primitive, may have vastly different
performance. Plugging in some typical values for the cardinality
of the primitives, we estimate the cardinality of the compaction
universe as >104, a vast yet largely unexplored design space. In
Section 3, we outline the different compaction strategies demon-
strated by Compactionary, as well as, how Compactionary allows
the participants to create new custom compaction strategies.

2.3 Performance Modeling & Metrics
The various design choices of the four compaction primitives affect
the overall performance of an LSM engine. Below, we present a
brief account of the performance metrics which we focus on in

https://disc-projects.bu.edu/compactionary/#interactiveDemo

Primitives Physical interpretation Options

Trigger When to re-organize the data layout? Level saturation; #Sorted runs; File staleness; Space amplification

Data Layout How to organize the data on device? Leveling; Tiering; 1-Leveling; L-Leveling; Hybrid

Granularity When to re-organize the data layout? Level; Sorted run; Single sorted file; Multiple sorted files

Data movement policy Which block of data to be moved? Round-robin; Least overlapping (LO) parent; LO grandparent; Oldest; Coldest

Table 1: The compaction primitives, their physical interpretation, and the different values that they can take.

the demonstration. In the web UI, hovering the mouse pointer of a
metric name reveals its definition along with the formulae used to
model it. Throughput for ingestion and lookups are modeled based
on the device bandwidth input and assuming complete utilization
of the device bandwidth.
Meta-Metrics. Meta-metrics are parameters that are artifacts of
the compaction strategies employed, which in turn, influence per-
formance along several axes. Meta-metrics include the number of
levels and sorted runs in a tree, number of compactions performed,
and the average amount of data moved due to compactions.
Ingestion Metrics. Ingestion metrics include the ingestion perfor-
mance in terms of write amplification and the average worst-case
ingestion throughput and the compaction performance in terms of
average and the worst-case compaction latency.
Read Performance. We model the read performance separately
for point lookups on existing and non-existing keys, short range
lookups (spanning at most two files per sorted run), long range
lookups (with variable selectivity).
Storage Footprint. Finally, we measure the storage footprint in
terms of space amplification, the total space occupied by the data
on disk, and the size of in-memory data structures.

3 THE COMPACTIONARY UI
Overview. Figure 1 shows the structure of the Compactionary UI.
The input panel allows the user to specify (i) the workload, (ii)
the allocated main memory and (iii) disk parameters, and (iv) the
data layout settings. Based on the input, the visualization panel of
Compactionary demonstrates through vivid animations the step-
wise re-organization of the disk data layouts via compactions. Dur-
ing the illustration process, the metrics in the next performance
panel are updated on the fly, and they are also used to construct
the performance plots in a secondary panel.
Description. The input panel allows the participants to construct
the size of ingestion workload by specifying the entry size and the
number of entries to be ingested (1). The participants can determine
the allocation of the main memory between the memory buffer
and Bloom filters (2) and the page size and file size on disk (3).
They can also input the size ratio of the LSM-tree and the default
data layout (4). Finally, under Advanced settings, the users can also
specify the selectivity for long range lookups, read/write bandwidth
support for a device, and even the speed of animation (5). After
setting the input parameters, the participants can start, pause, or
quick finish the emulation using the control panel (6).

The first column in the emulation panel shows the forma-
tion of an LSM-based data store that adopts full compaction which
performs compaction at the granularity of levels (7). The second
column demonstrates a partial compaction strategy where files are

picked at random or based on a round-robin policy (8). A hybrid
compaction strategy with lazy leveling, i.e., leveling in the last level
and tiering in the others, is demonstrated in the third column (9).
The final column allows the participants to create their own custom
compaction strategies with tiering in the shallower i (i≤L) levels
and leveling in the rest (10). To visualize compactions, a light-bulb
is placed against each level of the tree. Every time a compaction is
triggered in a level, the corresponding light-bulb can be observed
to glow against that level. Further, for LSM variants that store data
across multiple files within every sorted run, consecutive files are
differentiated by two different shades of blue.

The performance panel enables comparative analysis for 14
performance metrics side-by-side for up to four compaction strate-
gies at a time (11). The participants can also visualize the key
performance metrics in form of analytical time-series plots by click-
ing on the Generate plots button, which allows them to derive useful
insights from the experimental outputs (12).
Functionality. Compactionary allows the participants to compare
the behavior of several compaction strategies side-by-side, while
providing them the necessary infrastructure to change the work-
load and/or LSM tuning. In addition, Compactionary provides a
customizable framework to the participants where they can syn-
thesize new compaction strategies, as required and compare them
against state-of-the-art LSM compaction routines.

The Individual Analysis panel allows the participants to have
different settings for the compaction strategies, and yet, compare
them alongside (13). This is particularly useful for understanding
the implications of workload and the underlying hardware on per-
formance. We conclude with a summary of our key observations on
how compactions are central to the performance of LSM engines
and how we can extract (near) optimal performance by choosing
the appropriate compaction strategy.

4 DEMONSTRATION SCENARIOS
We demonstrate Compactionary in two scenarios with opportuni-
ties for extended interactions with the interested participants.
Scenario 1: Exploring LSM Compactions. We use the default
input parameters to ingest 10M 128B entries (data size ∼1.2GB) to
an LSM-tree with size ratio 4 and a buffer size of 16MB (holding up
to 217 entries). Bloom filters are allocated 10 bits-per-entry, and the
page size on disk is set to 4KB. By default, the vanilla LSM design
is set to leveling and the customized compaction strategy is set to
1-leveling, with tiering in the first level and leveling in the others.

The participant then initiates the demonstration using the con-
trol panel, and the Compactionary UI illustrates through animation
the step-wise construction of LSM-trees using four different com-
paction strategies. Each step in the animation shows the structure
of the LSM-trees after every buffer flush. During the animation, the

1

In
pu

t p
an

el

6

Co
nt

ro
l

pa
ne

l

2 3 4

5

7 8 9 10

Em
ul

at
io

n
pa

ne
l

Pe
rf

or
m

an
ce

 p
an

el

11 12

13

G
en

er
at

e
pl

ot
s

Figure 1: The CompactionaryUI allows the participants to visualize and compare several compaction strategies simultaneously.

participants can observe the construction of LSM trees with four
different compaction strategies side-by-side. Hovering over a level
in the tree, reveals the number of entries and the number of files
the level has along with its capacity. We point out that at the end
of the emulation, the vanilla LSM design with full compaction has
more levels compared to the other compaction strategies, due to
compacting data at a larger granularity. The partial compaction
routine, on the other hand, has a tree with the fewest number of
levels, but performs compactions the most frequently.
Scenario 2: Exploring Custom Compactions. Next, we allow
the participant to create their own hybrid compaction strategy. The
participants can specify with the first i≤L levels implemented as
tiering, while the remaining as leveling with full compaction. We
point out how the new design compares against the other three
compaction strategies, and how the input value for i affects the
ingestion and lookup performance.
Bonus Scenario: Ad-Hoc Exploration. For the interested LSM-
aware participants, Compactionary also has advanced options for
a richer analysis. The Individual Analysis panel allows the partici-
pants to run different workloads under different settings and LSM
tunings. The goal of this analysis is to allow the participants to
gain insights about how new hybrid designs affect the performance
of compactions in LSM-trees. The partial compaction panel is also
set up with a switch that enables running compaction jobs in the
background. Participants can set a threshold for level saturation to
understand the implications of background compactions.

5 CONCLUSION
In this demonstration, we visualize different compaction strategies
adopted in state-of-the-art LSM engines to understand the effects of
compactions on performance. We introduce Compactionary, a dic-
tionary of LSM compaction strategies, that allows the participants to
analyze multiple compaction strategies and create new compaction
strategies to explore the design space of LSM compactions.

ACKNOWLEDGEMENTS
We are thankful to Guanting Chen for his contributions in the early
stages of the project. This work was partially funded by NSF under
Grant No. IIS-1850202 and a Facebook Faculty Research Award.

REFERENCES
[1] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, andM. Strum. Optimizing

Space Amplification in RocksDB. In Proceedings of the Biennial Conference on
Innovative Data Systems Research (CIDR), 2017.

[2] C. Luo and M. J. Carey. LSM-based Storage Techniques: A Survey. The VLDB
Journal, 29(1):393–418, 2020.

[3] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured merge-tree
(LSM-tree). Acta Informatica, 33(4):351–385, 1996.

[4] S. Sarkar and M. Athanassoulis. Dissecting, Designing, and Optimizing LSM-
based Data Stores. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2022.

[5] S. Sarkar, T. I. Papon, D. Staratzis, and M. Athanassoulis. Lethe: A Tunable Delete-
Aware LSM Engine. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 893–908, 2020.

[6] S. Sarkar, D. Staratzis, Z. Zhu, and M. Athanassoulis. Constructing and Analyz-
ing the LSM Compaction Design Space. Proceedings of the VLDB Endowment,
14(11):2216–2229, 2021.

	Abstract
	1 Introduction
	2 LSM Compactions
	2.1 Compaction Primitives
	2.2 Compaction as an Ensemble of Primitives
	2.3 Performance Modeling & Metrics

	3 The Compactionary UI
	4 Demonstration Scenarios
	5 Conclusion
	References

