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Abstract. Indexes in data systems accelerate data access by adding
structure to otherwise unstructured data at the cost of index construc-
tion and maintenance. Data systems, and particularly, the underlying
indexing data structures are designed to offer favorable ingestion (and
query) performance for the two extremes of data sortedness, i.e., unsorted
data (often assumed to follow a uniform random distribution) or fully-
sorted data. However, in practice, data may arrive with an intermediate
degree of pre-sortedness. In such cases, where data arrives nearly (but not
necessarily fully) sorted, the intuition is that the indexing cost should be
lower than when ingesting unsorted data. Such sortedness-aware index
designs lack from the literature. In fact, there is a need for a framework to
explore how index designs may be able to exploit pre-existing sortedness
during data ingestion to amortize the index construction cost.

In this paper, we present Benchmark on Data Sortedness, BoDS for
short, that highlights the performance of data systems in terms of in-
dex construction and navigation costs when operating on data ingested
with variable sortedness. To quantify data sortedness, we use the state-
of-the-art (K, L)-sortedness metric. Specifically, BoDS benchmarks the
indexing performance of a data system as we vary the two fundamental
components of the metric: (i) K, that measures how many elements are
out-of-order in a data collection; and (ii) L, that measures by how much
the out-of-order entries are displaced from their respective in-order po-
sitions; as well as (iii) the distribution of L. We present in detail the
benchmark, and we run it on PostgreSQL, a popular, production-grade
relational database system. Unsurprisingly, we observe that PostgreSQL
cannot exploit data sortedness; however, through our experiments we
show the headroom for improvement, and we lay the groundwork for ex-
perimentation with sortedness-aware index designs. The code for BoDS
is available at: https://github.com/BU-DiSC/bodsl
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1 Introduction

To facilitate efficient query processing, database systems often utilize indexes
that are gradually populated as new data is ingested [3J4UGI9ITOITR]. Indexes
accelerate data access for both analytical and transactional workloads by effi-
ciently supporting selective queries. They improve query performance by adding
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Fig. 1: Classical data organization techniques like indexing in databases fo-
cus on the two extremes of data sortedness, i.e., (a) scrambled data, and
(b) fully-sorted data. However, there is a lack of a clear framework to evalu-
ate the indexing performance of systems with intermediary degrees of data
sortedness as shown in (c¢) and (d), where data is ordered to some extent.

structure to an otherwise unstructured data collection at the expense of index
construction and maintenance.

Data Sortedness. The goal of a range index is to create a fully sorted version
of the ingested data (on the indexed attribute). In practice, in several real-life
use cases, data arrives with some pre-existing structure, i.e., data may be near-
sorted, but not necessarily fully sorted on the indexing attribute. For example, in
a typical data warehousing benchmark like TPC-H [19], one of the main tables
(lineitem) has three date columns (shipdate, commitdate, and receiptdate),
and when data arrives as ordered on the shipdate, the other two date columns
on commitdate and receiptdate are also very close to being sorted (but not
fully-sorted) [3]. Near sortedness can also be found in time-series, stock market
data, and monitoring measurements that are part of complex hybrid transaction-
al/analytical pipelines. Further, near-sorted data collections often result from a
previous query or join operation or sorting based on another naturally correlated
attribute [5]. We also have to index near-sorted data when a relation is already
sorted based on a collection of attributes, and the index built is a superset of the
ranking attributes. In addition to classifying data as fully sorted or not sorted,
there is a wealth of intermediate states of data sortedness. These are captured
by sortedness metrics [BISIT2/T4] which create a continuum between the two ex-
tremes. To populate this continuum, we use (K, L)-sortedness [5] that allows us
to vary how many entries are out-of-order and by how much.

Problem: Lack of Sortedness Benchmark for Indexes. When ingesting
data in a heap file, we only need to append it at the end of the file. However,
when an index is involved, an additional index ingestion effort goes to establish
a complete order of the ingested data (based on the index attributes) to facili-
tate future queries. For workloads that arrive with some pre-existing degree of
sortedness, one would expect that the intrinsic data sortedness would reduce
the extra effort spent to establish total order to the ingested data and speedup
index construction. Despite the natural correlation between data sortedness and
index construction cost, state-of-the-art database indexing techniques are not
(yet) designed to take advantage of any intermediate degree of sortedness when
ingesting near sorted data. Classical index structures (e.g., BT-trees) focus on
the two extremes of data sortedness, i.e., unsorted data (regular insertions) and
fully sorted data [2[7] (visualized in Fig.[Th and[Ib), but do not consider the case
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of near-sorted data (Fig. [l and [Id). While it is intuitive that indexes should
be able to perform better with increasing sortedness, as less effort is required
to establish total order, practical performance evaluations for indexes and data
systems are unexplored. In order to bridge this gap, we propose a new bench-
marking framework that analyzes the performance of indexes and data systems
by varying data sortedness in a continuum - from scrambled (unsorted) data
to fully sorted data. Specifically, in this work, we focus on quantifying indexing
performance when ingesting data that is nearly sorted on the indexed attribute.

Contributions. To this end, we formalize the Benchmark on Data Sort-
ednessE| (BoDS) that varies data sortedness using the (K, L)-sortedness met-
ric [B]. As a first step toward constructing the benchmark, we present a variable-
sortedness data generator that builds (K, L)-sorted data collections using a user-
specified distribution for L. The benchmark tests five different workload types:
(i) pure bulk loading, (ii) one-by-one insertion only, (iii) mixed inserts and queries
without pre-loading, (iv) mixed inserts and queries after preloading using bulk
loading, and (v) mixed inserts and queries after preloading using one-by-one
insertions. For each of the five workload types, a spectrum of different data
ingestion orders are generated using the (K, L)-sortedness metric and tested
to quantify the combined impact of data sortedness and access pattern types.
We highlight that BoDS tests both bulk insertion and transactional read-
/write mixed workloads with a varying degree of (ingestion) sortedness.
As an example, we benchmark PostgreSQL, a state-of-the-art production-grade
database system, and present key observations regarding adapting data systems
and indexing to be sortedness-aware.

2 Data Sortedness Metrics

In order to vary, study, and exploit data sortedness, we first need a way to
quantify it. To that end, several metrics have been proposed and used in liter-
ature [DIBIT2IT4]. Some of these include inversions that measure the number of
pairs in the incorrect order, runs that measure the number of contiguous increas-
ing subsequences in the collection, and exchanges that quantify the least number
of swaps needed to bring the data in order [12]. While these metrics are intuitive
to quantify data sortedness, they have certain drawbacks that make them un-
suitable to use in a sortedness benchmark for indexing. For example, inversions
fail to capture global disorder where the data collection contains monotonically
increasing sorted sequences, but the sequences are placed out of order; runs fail
to capture local disorder, where each entry in the data collection can simply be
swapped with its adjacent entry to establish total order [I4].

(K, L)-Sortedness Metric. Ben-Moshe et al. proposed to quantify data sort-
edness using a combination of two parameters: K, which captures the number of
elements that are out of order, and L, which captures the maximum displacement
in the position of the out-of-order elements [5]. Essentially, the (K, L)-sortedness
metric captures a data collection’s sortedness in terms of how many elements (K)

3 BoDS codebase: https://github.com/BU-DiSC/bods.
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Fig.2: A sample data collection having 10 elements with K =4 and L = 6.

are in the wrong position, and crucially, by how much (L). The combination of
both K and L in this metric underlines the effort it would take to establish total
order in a data collection, while also overriding drawbacks of one-dimensional
metrics (discussed above) with respect to global or local disorder. Fig. [2| visu-
alizes the (K, L)-sortedness metric for a data collection of 10 elements with 4
elements out of order (K = 4) and a maximum displacement of 6 positions
(L = 6). The original definition refers to L as maximum displacement, meaning
that even if all out-of-order elements are off by one position and only one is off by
a higher number, say maz_disp, then L = max_disp. When considering files
and indexing, one element in a wrong location is not considered detrimental.
Hence, we consider one more dimension of near-sortedness in our benchmarking
metric: the distribution of the displacement of the out-of-order entries.

3 Generating (K, L)-Sorted Data

The most important part of the proposed benchmark is generating data collec-
tions with a varying degree of sortedness. To that end, we build a synthetic data
generator that creates data collections adhering to specific values of the (K, L)-
sortedness metric. The data generator takes as input user-specified values for the
K and L parameters of the sortedness metric as a fraction of the total number
of entries (N), as well as the displacement distribution (on L). The total size of
the generated data collection can be controlled using the number of entries to be
generated (V) and the payload size (P). The payload is a randomly generated
string of a given size. Table [I] summarizes the input parameters to the workload
generator.

Variable-Sortedness Data Generator. The data generator initially creates
a fully sorted data collection and induces “unsortedness” as required. The overall
process is described in detail in Algorithm [I] Unordered entries are generated

Parameter Description
N No. of entries in the data collection
P Size of the payload for every key
K No. of out-of-order entries in the data collection
L Maximum displacement of an out-of-order entry
B(a, 8) Beta distribution for displacement (on L)
S Seed value
0 output directory path

Table 1: Overview of input arguments to the sortedness data generator.
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Algorithm 1: Generate (K, L, B)-sorted keys

Input: Fully sorted array arr, N > 0; K > 0; L > 0; B(a, 8), num_triesl > 0, num_tries2 > 0
Output: (K, L, B)-sorted array arr

1 Sources + Generate_Sources(N, K) ; /* using Algorithm [2| */
2 dest <>; /* set of destinations */
3 left <>; /* set of left out sources */
4 for x € Sources do
5 while num_ triesl > 0 do
6 r < Pick_dest(N, K,z, B); /* using Algorithm (3| */
7 num_triesl < num _triesl — 1;
8 if r € dest or r € Sources; /* destination already used */
9 then

10 if num_ triesl == 0; /* retrials exhausted, moving r to leftovers */
11 then

12 | insert r to left;

13 end

14 continue;

15 else

16 insert r in dest;

17 swap arr[x| with arr[r|;

18 break;

19 end

20 end

21 end

22 for x € left; /* randomized re-attempt for leftovers */
23 do

24 while num_ tries2 > 0 do

25 r < Pick_dest(N, K, x, B); /* using Algorithm (3| */
26 num_tries2 <~ num_tries2 — 1;

27 if © € dest or r € Sources; /* destination already used */
28 then

29 ‘ continue;

30 else

31 insert r in dest;

32 swap arr[x] with arr[r];

33 remove x from left;

34 break;

35 end

36 end

37 end

38 Perform_Brute_Force(arr,left,dest, L) ; /* using Algorithm E] */

by swapping elements, i.e., each swap generates two out-of-order elements that

contribute to the K parameter. Thus, for a given K, the data generator first
picks K/2 sources for swaps (Alg. , and for each source, a destination position
(up to L positions away) is randomly picked to swap with (Alg. .

Algorithm 2: Generate K/2 swap sources

I e I N

-
=]

Input: N > 0; K >0
Output: A set of source swaps X
cnt «— 0;
while cnt < K/2 do
pick a random index r € [0, n — 1];
if » € X then
‘ continue;
else
insert r in X;
cnt + +;
end
end

Displacement Distribution. While the (K, L)-sortedness metric quantifies
the effort required to bring the data collection to fully-sorted order, it does
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Algorithm 3: Pick a destination

Input: N > 0; K > 0; source z; B(a, 8)
Output: Destination d

if position + low_ jump < N then
‘ low_jump < —x;
end
10 pick 7 € [0, 1];
11 initialize beta distribution object distr(B);
12 rd < quantile(distr, r); /* picks number in [0,1] range */
18 jump < low_jump + ((high_jump — low _jump) * rd);
14 ret <+ position + jump;

1 low_jump < —L;

2 high _jump < L;

3 if position + high_jump > N ; /* Sanity checks for out-of-bounds */
4 then

5 ‘ high _jump < N — 1 — x;

6 end

7

8

9

Algorithm 4: Brute-Force Swap

Input: Array arr, leftovers left, destination swaps dest, L
Output: Array arr after swapping leftovers

1 for = € left; /* final brute-force attempt for leftovers */
2 do
3 pick rnd € [0,1] ; /* coin toss for forward/backward run */
a if rnd < 0.5; /* move forward */
5 then
6 ‘ start < x — L; end < = + L;
7 else
8 | start < x4+ L; end < = — L; /* move backward */
9 end
10 for r € [start, end]; /* loop and pick first valid spot */
11 do
12 if r € dest or r ==x orr € X; /* check for cascading swaps */
13 then
14 | continue;
15 else
16 insert r in dest;
17 swap arr[x| with arr[r|;
18 break;
19 end
20 end
21 end

not specify how the unordered entries are distributed within the data collection.
The L parameter captures only the maximum displacement among all unordered
entries, hence, we may have only one entry that is displaced by L, whereas other
entries have a much smaller displacement. Thus, to offer fine-grained control on
the distribution of the displacement among the unordered entries, we use an
additional parameter to capture the distribution of data sortedness through a
generalized beta distribution with fixed bounds between —L and L. Fig. [3]shows
examples of the probability density (PDF) of the beta distribution. Note that the
beta distribution maps to uniform for a = 8 =1 (Fig. ) and that it maps to a
variable degree of skewed distributions for different values of « and S (Fig. ,
and ) Alg. 3| is already capable of generating swaps with a distance that
follows a user-defined distribution (lines 10-14). To do this, we use a generalized
beta distribution with user-specified o and 3 values. For this, we use the C+-+
boost library that provides a beta distribution function and a quantile function
for picking a number per the beta distribution using inverse transform sampling.
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(a) (b) () (d)
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Fig. 3: Probability density (PDF) of S-distribution bounded between [—L, L].
Using the [-distribution offers fine-grained control on the L parameter. In
(a) that the displacements are uniformly distributed (o = g = 1), while
in (b) the displacements are centered around the mean = 0 (a = § = 2).
Skewness in the distribution of displacements can be introduced like (c)
and (d), where they are closer to the maximum displacement (o = 3 = 0.5),
or biased toward one direction (a =2, = 5).

Examples of (K, L)-Sorted Data. The data generator is capable of generating
data collections with variable K, L, and displacement distribution. For example,
a dataset with either K = 0% or L = 0% is fully sorted. Similarly, a dataset
with K = 10% and L = 2% will have 10% of its total entries out of order, and
each out-of-order entry is displaced within a distance equivalent to 2% (at most)
of the total entries from its ideal position. Figure shows an example (K, L, B)-
sorted data collections. Here, we have used a = 8 = 1 (uniform distribution) for
Fig. , while we use a« = 8 = 0.5 (skewed) for Fig. . Consequently, we
observe that a higher number of unordered entries in Fig. @e—{dh are displaced
by ~L as compared to the former set of figures.

Fig. 4: Examples of benchmark data with different K and L combinations
for data sortedness. The first row of visuals (a—d) are generated using a
uniform distribution (o« = 8 = 1), while the second row of visuals (e—h) are
generated using a skewed distribution concentrated close to the maximum
displacement (a« = 8 = 0.5). The following figures correspond to sortedness
levels: for the following sortedness levels: (a)&(e) K=10%, L=10%, (b)&(f)
K=20%, L=25%, (c)&(g) K=50%, L=25%, (d)&(h) K=50%, L=50%.
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Fig. 5: High-level architecture of the proposed Benchmark on Data Sorted-
ness (BoDS) workload instance that uses the (K, L)-sortedness metric.

4 The Benchmark on Data Sortedness

The Benchmark on Data Sortedness is a suite of workloads that compares data
ingestion and transactional (mixed read/write) accesses on indexing data struc-
tures and data systems, for a variable degree of sortedness. In this section, we
put together all the pieces introduced earlier to present the architecture of the
benchmark and its important components.

Overall Architecture. A BoDS deployment consists of five principal compo-
nents: (i) the coordinator, (ii) the data generator, (iii) the workload generator,
(iv) the workload executor and (v) the tested database system. When running
an instance of the benchmark, we first decide the workload type which controls
whether data ingestion is performed as bulk loading or via individual inserts
and whether there is a mix of reads and writes to the system. Next, a data file
is created per the degree of sortedness given by the K, L, and B(«, ) input
to the data generator as described in Section [3] The workload generator then
takes as input the data file and the workload type to generate driver files that
prepare the workload according to the system’s interface. When testing full-
blown relational systems, the system driver files contain SQL statements. A file
named preload.sql loads the initial data and preconditions the database, and
a second file named operations.sql contains the interleaved inserts or queries.
Finally, the workload executor executes the driver files on the tested system and
monitors their runtime. To try variable data sortedness, the workload executor
is re-instantiated with different (K, L) inputs. Figure [5|illustrates the high-level
architecture of a BoDS workload instance.

Supported Workloads. We briefly summarize the workload types in Table
Specifically, the benchmark supports five workload types:
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Data Loading Operations
Workload
Method % of data R/W ratio % of data
A BL 100% - -
B 11 100% - -
C - 0% 83%/17% 100%
D BL 80% 50%,/50% 20%
E 11 80% 50%,/50% 20%

Table 2: Overview of workloads supported by the Sortedness Benchmark.
Workloads A and D use Bulk loading (BL) for the data loading phase, while
workloads B and E use Individual inserts (II).

(A) bulk load: where we insert data into the system using the bulk load func-
tionality (e.g., copy in PostgreSQL);

(B) individual inserts: where we ingest data into the system one by one;

(C) mixed inserts and read queries with no preloading: where we insert data in-
terleaved with (20%) reads;

(D) mixed inserts and read queries after bulk loading (a combination of A and
C): where we pre-load the system with a portion of the data using bulk
loading and perform interleaved reads and writes;

(E) mixed inserts and read queries after individual inserts (a combination of B
and C): where we pre-load the system with a portion of the data using
individual insertions and perform interleaved reads and writes;

For the mixed workloads (D) and (E), we use 80% of the to-be-ingested data
to preload the system and perform mixed reads and writes on the remaining
data. Also, the lookup keys are uniformly chosen and may consist of both empty
and non-empty queries within the key domain. Essentially, workload C model
performance during the initialization-state of the index, while workloads D and
E capture the steady-state performance.

5 BoDS in Action

We run the Benchmark on Data Sortedness (BoDS) on PostgreSQL, a popular
row-store and present key observations regarding its performance when ingesting
nearly-sorted data.

Experimental Setup. We run the experiments on Amazon Web Services (AWS)
EC2 instances of t2.medium instance type. Each instance has 2 virtual Intel(R)
Xeon(R) CPU E5-2686 v4 @ 2.30GHz CPUs, 4GB DIMM RAM and 40GB root
storage using general purpose SSDs (gp2) with 120 provisioned IOPS on EBS
storage. The instances run Ubuntu Server 22.04 LTS (HVM) that use a 64-bit
(x86) architecture.

Default System and Index Setup. We use PostgreSQL 14.3 to execute the
benchmark with a modified buffer pool (shared buffer) space of 1GB. In all ex-
periments, we use unlogged tables to avoid overheads due to write-ahead logging
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Fig. 6: Comparison of bulk loading and insert performance of PostgreSQL
with near-sorted data of 16M rows (4GiB).

(WAL) and isolate index performance. We ingest data in a table containing two
attributes: (i) id_col, and (ii) payload. A B-tree is created (before data inges-
tion/loading) on the id_col attribute. In each experiment, we drop the existing
table (if it exists) along with its corresponding index, and recreate them.

Default Data Setup. We create multiple data collections (of size 4GB) with
varying K and L values using a uniform distribution (« = 5 = 1). Each data
collection is created with 16M key-value pairs having an entry size of 256B,
where each key is 4B and the payload is 252B.

Default Testing Suite. BoDS supports execution of any combination of (K, L)
and B(a, ) for a particular workload type. By default, we run the benchmark for
the following (K, L)-near-sorted combinations: (100,1), (50,1), (25,1), (10,1),
(5,1), (1,1), (0,0), (1,5), (1,10), (1,25), (1,50), (1,100), and (100,100). This
way, we ensure to compare the systems for a spectrum of near-sortedness, in
addition to the two extremes of fully-sorted data and unsorted data.

Evaluation Metrics. We measure using BoDS the performance of PostgreSQL
measuring: (i) ingestion latency, and (ii) overall operational latency in case of a
mixed workload with reads and writes.

5.1 Raw Ingestion Performance

In this set of experiments, we compare the performance of the PostgreSQL (Post-
gres) system while bulk loading and one-by-one insert into a database table using
a B-tree index. For bulk loading, we use the COPY command to load the table
with the entire data file. In the case of individual inserts, we write an INSERT
command for each row of the data collection. In both cases, the commands are
written to the load.sql file, and we measure the overall execution time while
executing this file on Postgres. Fig. [6] shows the comparison of bulk loading and
individual inserts with near-sorted data, using a B-tree index for Postgres.

Bulk Loading is Extremely Fast. As expected, we observe from Fig. [6] that
bulk loading (black line) in PostgreSQL is extremely fast, with an average inges-
tion latency of 5.62us per inserted row. This is because bulk loading populates
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the index bottom-up by first creating fully-occupied leaf and internal nodes of
the b-tree index. This allows PostgreSQL to avoid expensive node splits for both
leaf and internal nodes as well as re-organizing the data layout. However, bulk
loading the data entails sorting the entire collection up front. This is why ingest-
ing a fully sorted (K=L=0) data set (82s) takes 19.51% less time as compared
to ingesting unsorted (K=L=100) data (98s). Note that this improvement in
performance is owing only to a smaller sorting overhead before bulk loading.

PostgreSQL is Agnostic Toward Data Sortedness. Fig. |§| (red line) also
shows that when performing individual insertions, PostgreSQL is unable to take
advantage of any intermediary data sortedness. The sortedness-agnostic inges-
tion performance of PostgreSQL can be attributed to the underlying B-tree in-
dex, the construction cost of which is O(logrN) (since there is no bulk loading
happening in this case) due to tree-traversal. The B-tree does not use inherent
sortedness in already sorted or near-sorted data to reduce the ingestion cost,
rather, ends up doing extra work in establishing order in data that already
had some degree of inherent sortedness. Thus, regardless of the data sortedness,
PostgreSQL ends up spending ~ 20x (108us) more time during data ingestion
through individual insertions compared to the bulk loading time.

Column-Store Systems Require a Fundamental Redesign to Support
Data Sortedness. Most column-store systems primarily optimize for the read
performance of analytical queries through vertical partitioning, vectorization,
compression, tight for-loops, and cache efficiency and do not rely on secondary
indexes [I]. Further, when loading data, one cannot enforce the system to main-
tain the data fully sorted (similar to what a secondary B-tree index would do
in a row-store), hence, column-store systems would require fundamental design
changes to try and accommodate a variable degree of data sortedness. For exam-
ple, MonetDB supports two types of indexes, imprints [I7] and ordered indezes
(essentially a sorted version of the desired columns), which are both invalidated
after any insert, update, or delete on the corresponding tables [I5]. We run work-
loads A and B on MonetDB using the ordered index with auto-commit off. As we
vary the underlying sortedness for each workload, we observe that the runtime
does not change since we only pay the cost of vertically partitioning the incom-
ing data and populating the table’s columns. Note that the index is invalidated
after the first update and is not maintained thereafter.

We now briefly discuss two commercial column-store systems, Vertica and
Actian Vector. Vertica supports projections, which are similar to ordered in-
dexes and do not support live updates [13]. Hence, we expect to have similar
behavior to MonetDB. Actian Vector supports live updates in a sorted column
through an approach called Positional Delta Tree (PDT) [I1I]. PDT is essentially
a variation of an in-memory B-tree with positional information. Hence, based on
our experimentation with an in-memory B-tree [I6], we do not expect significant
performance differences when varying sortedness. However, more experimenta-
tion is needed to fully assess Vertica’s and Actian Vector’s capability to exploit
sortedness, which we leave as future work.
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Fig. 7: Performance of PostgreSQL with mixed workloads: (a) Mixed work-
load with no pre-loading (b) Mixed workload using bulk loading for preload-
ing (c) Mixed workload using individual inserts for preloading.
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Fig. 8: Comparison of latency per operation among the mixed workloads C,
D and E.

5.2 Mixed Workload Performance

In this set of experiments, we compare the performance of PostgreSQL under
the three mixed workload settings supported by our benchmark: (i) mixed with
no preloading (workload C); (ii) mixed after bulk load (workload D); and (iii)
mixed after individual insertions (workload E). For workload C, we perform 16M
insertions interleaved uniformly with 3.2M point queries, while for the workloads
D and E we first preload the system with 12.8M data rows and then perform
3.2M inserts interleaved uniformly with 3.2M point queries. Again, the preloading
phase is written to an intermediary file preload.sql that is either empty (for
workload C) or contains a COPY command (for workload D) or 12.8M INSERT
statements (for workload E); while in the operations phase the operations.sql
file contains the interleaved INSERT and SELECT statements. We then execute
both files on PostgreSQL and measure the workload execution latency. Fig. [7]
shows the comparison of phase-wise execution time for all three workloads.

PostgreSQL Cannot Harness Sortedness as a Resource. When ingesting
a mixed workload with uniformly interleaved reads and writes, even for a com-
pletely sorted data collection (K=L=0) the performance of PostgreSQL mimics
the performance of ingesting unsorted data (K=L=100), as seen from Fig. m(a).
When performing individual insertions, the underlying B-tree index is unable to
identify if the ingested data is completely sorted. This is because state-of-the-art
index structures lack a mechanism to assess data sortedness of ingested entries
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Fig.9: (a) A sortedness-aware system should adapt to data characteristics.
(b) OSM-tree index is an example of an index that adapts to data sortedness
to offer favorable ingestion.

on the fly. In fact, this trend can also be observed in the operational latency for
workload D, as well as both phase-wise latencies in workload E.

Fig. B shows the average latency-per-operation for mixed workloads C, D,
and E as we vary the data sortedness. While the average operational latency
remains largely unaffected by data sortedness, we observe that workload C shows
~15-16% lower latency as compared to mixed workloads D and E. Workload C
contains no preloading phase, and hence, initial operations are performed on
a smaller database (and subsequently, a smaller index) by size. On the other
hand, workloads D and E do contain a preloading phase where the database and
index are warmed-up with 3.2GB data (80% of 4GB), and thus, every insert or
query needs to traverse the index which exacerbates the operational cost. Note
that workload C represents the initialization-state of the index/database, while
workloads D and E represent the steady-state.

6 Toward Sortedness Awareness

From our experiments with PostgreSQL, we have observed that the system is
unsurprisingly not sortedness-aware. Fig. [Jh summarizes the results from
where we maintain a B-tree index during data ingestion with increasing sorted-
ness. PostgreSQL is agnostic to sortedness due to the inability of the underlying
B-tree to use data sortedness as a resource. We highlight the vast headroom
for improvement during index construction by comparing the individual insert
latency (red line in Fig. Eh) against the bulk loading latency (black line). As
we pointed out in state-of-the-art index data structures like B-tree lack the
means to assess sortedness on the fly during ingestion and end up paying the
standard construction cost (i.e., worst-case performance) even for nearly sorted
data. Ideally, a sortedness-aware index and, in turn, a sortedness-aware system
should lower the index construction cost when ingesting data with increasing
sortedness and, thus, follow a trend similar to the dotted blue line in Fig. [Gh.
Existing literature on indexes does not explore sortedness when optimizing
index construction. Providing classical indexes with the means to capture data
sortedness during ingestion (most notably, buffering) would incur a read over-
head. Hence, we expect a tradeoff between optimizing index construction by
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harnessing data sortedness and read performance. However, an ideal sortedness-
aware index should be able to navigate this performance tradeoff. It should offer
near-optimal ingestion (bulk loading) in the presence of high data sortedness,
while falling back to the current baseline otherwise. Further, it should amortize
any read overheads incurred to offer better overall performance. A first design
that uses sortedness as a resource is the OSM-tree [I6] which uses a buffer to
capture data sortedness in memory and to maximize bulk loading. Fig. [Op shows
that the OSM-tree acts like a B-tree when ingesting unsorted data (left-end of
the x-axis), and mimics bulk loading when ingesting fully sorted data (right-end
of the x-axis), while bridging the gap for data sortedness between the two ex-
tremes. Similarly to the experiments with PostgreSQL, we ingest 16M keys and
allocate a buffer pool of 25% of the total data size to both OSM-tree and B-tree.
We use workload A for the bulk loading line, and workload B for the individ-
ual inserts to the B-tree and the OSM-tree, to which we allocate an in-memory
buffer of 1% of the total data size. This small in-memory buffer investment,
along with the other design elements of OSM-tree (e.g., partial opportunistic
bulk loading), leads to ~9x faster ingestion for fully sorted data, making indi-
vidual inserts almost as efficient as bulk loading. Even for lower data sortedness
(K=L=10%), OSM-tree offers a ~5x improvement over B-tree, while mimick-
ing the baseline for unsorted data. Overall, having a sortedness-aware design
will allow data systems to build their indexes faster, e.g., via batching inserts
that can be opportunistically bulk loaded. Such a sortedness-aware system may
offer orders of magnitude better ingestion performance in the presence of data
sortedness, which will be beneficial even for mixed read/write workloads.

7 Conclusion

The Benchmark on Data Sortedness lays the groundwork to test systems and in-
dex data structures that will be designed to harness data sortedness. We expect
the trend shown in Fig. [J] to match the observed performance for sortedness-
aware indexing data structures and systems, with variations that will correspond
to the degree each approach is optimized for interleaving reads and writes, ac-
curately capturing sortedness, and memory availability. Overall, we expect that
new sortedness-aware data structure designs and data systems will emerge and
will employ BoDS to show how they cope with variable data sortedness.
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