
Acheron: Persisting Tombstones in LSM Engines
Zichen Zhu

Boston University
zczhu@bu.edu

Subhadeep Sarkar
Boston University
ssarkar1@bu.edu

Manos Athanassoulis
Boston University
mathan@bu.edu

ABSTRACT
Modern NoSQL storage engines frequently employ Log-structured
merge (LSM) trees as their core data structures because they offer
high ingestion rate and low latency for query processing. Client
writes are captured in memory first and are gradually merged on
disk in a level-wise manner. While this out-of-place paradigm sus-
tains fast ingestion rate, it implements delete operations via insert-
ing tombstoneswhich logically invalidate older entries. Thus obsolete
data cannot be removed instantly and may be retained in LSM trees
for arbitrarily long time. Therefore, out-of-place deletion in LSM
trees may on the one hand, violate data privacy regulations (e.g.,
the right to be forgotten in EU’s GDPR, right to delete in California’s
CCPA and CPRA), and on the other, it hurts performance.

In this paper, we develop Acheron, which demonstrates the per-
formance implications of out-of-place deletes and how our method
achieves timely persistent deletes. We integrate both prior state-
of-the-art compaction policies and our recently presented method,
FADE, into Acheron and visualize the life cycle of tombstones in
LSM trees. Using Acheron visualization, the users can observe that
the state of the art does not provide guarantees on when obsolete
entries can be physically removed, and also observe that FADE
can achieve timely persistent deletes without full tree compaction.
The users can further customize the workload, LSM tuning knobs,
and disk parameters to investigate the impact of different factors
on tombstones and the performance. This demonstration provides
key insights into the impact of tombstones for LSM-interested re-
searchers and practitioners.

1 INTRODUCTION
LSM-based Key-Value Stores. Data-intensive applications (e.g.,
Internet-of-things, edge computing, 5G communications, and au-
tonomous vehicles) generate a huge amount of data at unprece-
dented rates. Several modern database systems rely on LSM-tree-
based key-value stores to sustain efficient ingestion for OLTP work-
loads (e.g., BigTable, MyRocks, and CockroachDB). In LSM trees,
incoming entries are batched in an in-memory write buffer, and
once the buffer is full, it is flushed to storage as an immutable
sorted run. When the number of accumulated similar-sized runs
exceeds a pre-defined threshold, they are merge-sorted to form a
larger immutable run (this process is also termed compaction [3]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’23, June 18-23,2023, Seattle, WA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

(A) Leveling (B) Tiering

Figure 1: In an LSM-tree, for every tombstone, there can
be (A) one matching entry per level for leveling or (B) one
matching entry per tier per level (T per level) for tiering,
where T = 3 in this example.

The immutability of sorted runs does not allow for in-place up-
dates/deletes, rather all updates lead to sequential writes during
flushing and compaction.
Deletes in LSM Trees. However, the immutability of sorted runs
comes at the cost of out-of-place deletes. Every delete operation is
implemented by inserting a tombstone, as shown in Figure 1. Within
the memory buffer, a tombstone eagerly deletes any older matching
entries, and it is maintained to invalidate further matching entries
in the tree. When the memory buffer is full and it is being flushed as
a file on disk, its tombstones are tagged with a time stamp. As more
data is ingested, this file will be involved in compactions, during
which older entries with the same key will be physically discarded.
Problems.When a tombstone is inserted, older entries may exist in
deeper levels, and thus, we can only safely remove the tombstone
when it reaches the last level of the LSM tree through iterative
compactions. Tombstones and obsolete entries may co-exist for an
arbitrarily long time until all tombstones are compacted to the last
level, which has the following implications:

(a) Tombstones and obsolete entries increase space amplification.
(b) Before obsolete entries are physically discarded, they are likely

to be involved in other compactions, which may lead to to
increased write amplification.

(c) Invalid entries may pollute the indexes and filters [1], and thus
hurt range and point query performance.

(d) Out-of-place deletion does not guarantee on older records are
physically removed, which may violate data privacy regula-
tions [2] such as the right to be forgotten in EU’s GDPR, right to
delete in California’s CCPA and CPRA.

SIGMOD ’23, June 18-23,2023, Seattle, WA, USA Zichen Zhu, Subhadeep Sarkar, Manos Athanassoulis

Our approach. The approach that we demonstrate [2] proposes
a new compaction policy that prioritizes files containing older
tombstones. Compared to a full tree compaction, this approach
retains LSM tree’s benefit of an amortized merging cost with no
latency spikes and has less write amplification and shorter write
stalls. Specifically, compactions are more eagerly triggered based on
the maximum age of tombstones for each level, so that tombstones
can reach the last level within a user-defined threshold.

In this paper, we develop Acheron1, which demonstrates the
performance implications of tombstones, and how our method
achieves timely persistent deletes. To our knowledge, there are no
previous systems or tools that reveal tombstones’ impact on new
data privacy regulations and system performance in LSM trees. LSM-
interested researchers and practitioners can benefit from Acheron
to gain more useful insights into this impact.
Demonstration.Conference participants can interact with Acheron
to compare and analyze the life cycle of tombstones in LSM trees
under different scenarios. From the visual interface, participants
can see (i) when tombstones move from shallower levels to deeper
levels and are physically deleted in the last level (ii) how our method
purges obsolete data compared to other compaction policies, and
(iii) how tombstones affect the system performance. As a remark,
Acheron also offers the opportunity for participants to vary the
workload composition and LSM tunings (e.g., delete percentage, size
ratio, storage read/write speed) to exploremore scenarios. The demo
is available at https://disc-projects.bu.edu/acheron/research.html,
including a short video on how to use it2.

2 ENABLING TIMELY PERSISTENT DELETES
To enable timely persistent deletes, in prior work, we introduced
FADE, a new family of delete-aware compaction policies. FADE
(short for FAst DEletes) piggybacks the task of timely delete per-
sistence to the LSM-tree’s compaction routine while retaining the
LSM tree’s benefit of amortized merging cost and predictable per-
formance. Acheron taps into the key design elements of FADE and
presents an interactive framework highlighting how one can navi-
gate the performance-privacy trade-off given a threshold time for
delete persistence and a target performance. In this section, we
describe the technical details of FADE and present the performance
metrics we use in Acheron.

2.1 FADE
Delete Persistence Threshold (DPT). FADE ensures that all the
tombstones are persisted within a user-specified delete persistence
threshold (DPT). Delete Persistence Threshold (DPT) is formally
defined as, the worst-case time required, following the insertion of a
tombstone, the tree is void of any entry (including tombstones) with
a matching (older) key to that of the inserted tombstone. Typically,
DPT is specified as part of the service level agreement (SLA) con-
cerning the data retention. With DPT and other basic LSM tuning-
knobs as inputs, the complete algorithm for FADE is presented in
Algorithm 1. Compared to the state-of-the-art LSM compaction
policy, FADE augments it in the following two aspects.

1Acheron is the Greek mythological river used to transport souls to the underworld
(persist tombstones).
2Video: https://disc-projects.bu.edu/acheron/files/Demo.mp4

Algorithm 1: FADE
Input :delete persistence threshold (DPT); levels in tree (Lold); size ratio (T);

size of memory buffer (M)
FADE():
begin

Lnew = getCurrentTreeLevel()

d0 = 0
if Lnew > Lold then

for i ∈ [1 : Lnew] do
di = di−1 + DPT·(T − 1)/(T L − 1) · T i−1

for i ∈ [1 : Lnew] do
csize(i) = 0, t t li = 0, capi = M · T i

for j ∈ [1 : getFileCountInLevel(i)] do
csize(i) += size(j)
if di < aдej then

t t li++

score[i] = csize(i)/capi + t t li
compact_level = getLevelToCompact(score[])
compact_f ile = getFileToCompact(compact_level)
initiate compaction with compact_f ile

getLevelToCompact(score[])
begin

c_level = score[0]
for i ∈ [1 : Lnew] do

if score[i] > score[i − 1] then
c_level = i

return c_level

getFileToCompact(compact_level)
begin

f iles = getFilesInLevel(compact_level)
for i ∈ [1 : f iles .size() − 1] do

if dcompact_level ≥ f iles[i].aдe then
return f iles[i]

sort f iles by overlapping ratio in an ascending way
return f iles[0]

Compaction Trigger. In FADE, a compaction is triggered not only
when a level is saturated, but also when there exists at least one file
of which the oldest tombstone expires. To support the additional
trigger, FADE maintains the age of oldest tombstones per file and
assigns every file a time-to-live (TTL). If TTL is fixed as DPT for all
the files, all the expired tombstones/files in shallow levels can result
in cascading compactions and thus write amplification. To avoid
cascading compactions, FADE assigns a smaller TTL, di , for every
file in level i such that

∑L−1
i=1 di = DPT, where L is the number of

levels in the current LSM tree. The allocation strategy for di pro-
posed by FADE follows a geometric sequence with increasing ratio
T (the same as the size ratio), because the exponential assignment
is coherent with the capacity in each level and thus leads to fewer
concurrent compactions.
File Picking Policy. State-of-the-art LSM-engines pick the file
with the smallest overlap to reduce the write amplification (while
there are many other picking policies [3], this is the most common
one and thus selected to compare with Lethe in Acheron). However,
in FADE, files with expired TTL have to be prioritized over files
with least overlapping rate to enforce the timely physical deletion.
In other words, compactions triggered by TTL expiration only pick
expired files to compact while compactions that are only triggered
by saturation still picks the file with minimum overlapping ratio. If

Acheron: Persisting Tombstones in LSM Engines SIGMOD ’23, June 18-23,2023, Seattle, WA, USA

there is a tie in terms of expired TTLs, minimum overlapping ratio
policy will take in action again.

2.2 Demonstration Metrics
Lethe ensures that all the tombstones are persisted by the time their
lifetime reaches DPT by triggering more compactions, which natu-
rally introduces a trade-off between tombstones and compactions.
In other words, more compactions lead to fewer tombstones, and
vice versa. To better capture this trade-off, Acheron benchmarks
the following metrics during the emulation.
Tombstone-related Metrics. After every flush and every com-
paction, Acheron records the number of deletes, the number of exist-
ing tombstones, the number of expired tombstones (with respect to
the specified DPT), and the maximum age of existing tombstones.
Compaction Metrics. Compaction metrics include the number
of compactions, the average compaction (input) size, the average
compaction latency, and the worst-case compaction latency. These
metrics are updated every time compaction finishes.
Performance Metrics. Many performance metrics can be also
affected by extra tombstones and compactions. For example, fewer
tombstones indicate less disk space, smaller Bloom Filters (BFs), and
indexes required for the LSM tree, and thus Acheron also records
storage space and memory footprint for auxiliary structures. On
the other hand, the average compaction latency can significantly
affect the average ingest cost and write amplification, which are also
tracked in Acheron.

3 THE ACHERON DEMONSTRATION
Overview. The overall structure of Acheron UI is summarized in
Figure 2, which consists of an input panel, a progress-bar control
panel, an emulation panel, and a performance panel. Users interact
with Acheron through the following operation flow: (i) specify
the configuration in the input panel, (ii) click “Play” button in the
control panel (after which Acheron starts emulating the ingestion
process), (iii) watch the animation of how tombstones propagate
through iterative compactions in the emulation panel, (iv) compare
the metrics that are presented in the performance panel.
Input and Control Panels. Users can customize the workload
by specifying the number of total ingests, the key size, the entry
size, and the percentage of deletes (1). Instead of generating the real
workload, Acheron emulates it through scaling down the number of
ingests. When estimating the performance metrics, Acheron takes
into account the scaling factor to approximate them using smaller
dataset. In addition to the workload specification, Acheron allows
users to configure the main memory parameters (i.e., the memory
size for MemTable, the bits per key for BFs) (2), the size ratio (3)), disk
parameters (i.e., read latency per I/O, write latency per I/O) (4), and
persistence threshold (DPT) (5). After setting the input, users can
control the emulation progress via buttons “Play”, “Pause”, “Finish”,
and even dragging the progress bar in the control panel.
Emulation andPerformancePanels.The emulation panel shows
iterative compactions in three LSM trees with different compaction
policies – i.e., FADE (7), MinOverlappingRatio (8), and Round-Robin
(9). To better depict the difference in compaction policies, Acheron
shows the compaction progress in detail, as shown in Figure 3. In the

visualization of LSM trees, each rectangle represents a file (where
the length is proportional to the file size). Further, the length of the
gray/white striped part in a rectangle represents the proportion of
tombstones in this file. The darkness of the striped part indicates
the maximum tombstone age and when the oldest tombstone ex-
pires, the color turns completely dark. The darkness of the blue part
indicates the overlapping ratio of this file. The structure of LSM-
tree is updated every flush and every compaction. For illustration,
every flush is forced to be synced across different policies but the
actual time could differ. When watching the animated compaction
process, users can also observe that the performance metrics and
plots (the x-axis represents the flushed data in total) are updated
on the fly (10). If users want to investigate the impact of different
DPT in FADE, they can also switch to the “DPT Analysis in FADE”
to compare Lethe with three different DPTs (11).

4 DEMONSTRATION SCENARIOS
The participants can fully interact with Acheron to understand the
life cycle of tombstones, how the life cycle differs across different
compaction policies, and also the impact of DPT along with twelve
system metrics. We use the following three example scenarios to
demonstrate possible interactions between users and Acheron.
Scenario 1: Visualize the Life Cycle of Tombstones Through
Iterative Compactions.We consider the default setting: 10M 128-
byte entries with 25% deletes are ingested into an LSM tree with
16MB buffer size, 10 bits per key for BFs, 50-second DPT, and the
size ratio as 2. After users click the “Play” button, they can see the
whole tree construction progress, which includes how tombstones
moves from shallower levels to deeper levels, how tombstones age
(the color gradually changes from white to gray), and persist (no
gray strips/tombstones in the last level).
Scenario 2: Compare Compaction Policies for Deletes.When
comparing different compaction policies, users can clearly see some
tombstones expire (gray strips are replaced with pure black) under
MinOverlappingRatio and Round-Robin policy. In contrast, pure
black tombstones never appear in FADE since DPT is applied as a
hard constraint for tombstones’ TTL. Besides, users can also observe
the extra compaction cost from Lethe through those compaction
metrics since Lethe achieves timely persistence by prioritizing ex-
pired tombstones.
Scenario 3: Examine the Trade-Off Between Delete Timeli-
ness and Write Amplification. Users can also switch to “DPT
Analysis” mode to explore how different DPT affects performance.
The color of tombstones with lower DPT is darker since the maxi-
mum obsolete age ratio becomes small. Meanwhile, users can ob-
serve from the performance panel that extra compactions are trig-
gered with lower DPT, and thus the amortized ingest cost of lower
DPT is also higher. On the other hand, large DPT leads to high
space amplification as more tombstones can retain in LSM trees.

5 CONCLUSION
In this paper, we introduce Acheron, which visualizes the life cycle
of LSM trees under different settings. Acheron can help users to
understand why tombstones can stay for an arbitrarily long time
under state-of-the-art compaction policy and how FADE achieves
timely persistent deletes without full tree compaction. Acheron

SIGMOD ’23, June 18-23,2023, Seattle, WA, USA Zichen Zhu, Subhadeep Sarkar, Manos Athanassoulis

1 2 3

4
5

6

In
p

u
t

P
an

el
C

o
n

tr
o

l
P

an
el

E
m

u
la

ti
o

n
 P

an
el

P
er

fo
rm

an
ce

 P
an

el

7 8 9

10

11

Figure 2: The Acheron UI allows the participants to visualize the life cycle of tombstones under different compaction policies.

Figure 3: Acheron UI and visualizations. Each oblong represents a file. During a compaction, the file with red solid border
indicates that this file is being picked to compact to the next level and the files with red dashed border means that they
overlap with the selected file. After the compaction finishes, there will be newly generated files, marked by green solid border.

also allows users to explore the impact of DPT on tombstones and
performance.

REFERENCES
[1] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying

Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li. 2019. X-Engine: An Op-
timized Storage Engine for Large-scale E-commerce Transaction Processing. In
Proceedings of the ACM SIGMOD International Conference on Management of Data.

651–665. https://doi.org/10.1145/3299869.3314041
[2] Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanas-

soulis. 2020. Lethe: A Tunable Delete-Aware LSM Engine. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. 893–908.
https://doi.org/10.1145/3318464.3389757

[3] Subhadeep Sarkar, Dimitris Staratzis, Zichen Zhu, and Manos Athanassoulis. 2021.
Constructing and Analyzing the LSM Compaction Design Space. Proceedings of
the VLDB Endowment 14, 11 (2021), 2216–2229. http://vldb.org/pvldb/vol14/p2216-
sarkar.pdf

